Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (12): 932-940    DOI: 10.11901/1005.3093.2024.126
  研究论文 本期目录 | 过刊浏览 |
稀土元素CeT15高速钢铸态组织与力学性能的影响
屠后田1,2, 胡小强3,4(), 杨仁贤3,4, 王谦1,2, 李殿中3,4
1 中国科学技术大学稀土学院 赣州 341000
2 中国科学院赣江创新研究院 赣州 341000
3 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
4 中国科学技术大学材料科学与工程学院 沈阳 110016
Influence of Cerium on Microstructure and Mechanical Properties of Cast T15 High Speed Steel
TU Houtian1,2, HU Xiaoqiang3,4(), YANG Renxian3,4, WANG Qian1,2, LI Dianzhong3,4
1 School of Rare Earths, University of Science and Technology of China, Ganzhou 341000, China
2 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

屠后田, 胡小强, 杨仁贤, 王谦, 李殿中. 稀土元素CeT15高速钢铸态组织与力学性能的影响[J]. 材料研究学报, 2024, 38(12): 932-940.
Houtian TU, Xiaoqiang HU, Renxian YANG, Qian WANG, Dianzhong LI. Influence of Cerium on Microstructure and Mechanical Properties of Cast T15 High Speed Steel[J]. Chinese Journal of Materials Research, 2024, 38(12): 932-940.

全文: PDF(18944 KB)   HTML
摘要: 

采用扫描电镜(SEM)、电子探针(EPMA)、纳米压痕等实验手段,表征了T15高速钢铸态组织中Ce元素的分布,研究了Ce元素对其铸态组织中一次碳化物的作用机制及其对力学性能的影响。结果表明,T15高速钢中的Ce元素主要富集在稀土夹杂物颗粒处,少量的均匀分布在一次碳化物内。添加0.021% (质量分数,下同)的Ce,尽管没有改变T15高速钢铸态组织的类型,但是显著细化了一次碳化物和改善了MC碳化物的塑韧性,从而使其力学性能大幅度提高。与不含Ce元素的T15高速钢相比,添加Ce元素的T15高速钢其铸态组织中一次碳化物的平均等效直径和最大尺寸分别由4.70 μm和120.25 μm减小到2.91 μm和105.39 μm;MC中V原子的占比降低了6.16%,形貌由粗大条棒状转变为细密颗粒状,使其塑性因子、断裂韧性提高;T15高速钢硬度、抗弯强度和抗拉强度提高了2.84 HRC、130.52 MPa和59.42 MPa。

关键词 金属材料T15高速钢稀土元素一次碳化物铸态组织力学性能    
Abstract

The effect of Ce addition on the microstructure and Ce distribution characteristics of the as-cast T15 high speed steel (T15 HSS) was investigated by OM, SEM, XRD, EBSD and EPMA. The primary carbides and mechanical properties of the as-cast T15 micro-alloyed without and with Ce were also assessed comparatively by nanoindentation and tensile tests. The results show that the amount of alloyed Ce in T15 HSS enriches mainly in rare earth containing granular inclusions, but a few distributes uniformly in MC primary carbides. The addition of 0.021wt.%Ce does not change the as-cast microstructure types, but it obviously refines the primary carbides, remarkably enhances the plasticity and toughness of MC carbides, and significantly improves the mechanical properties of T15 HSS. Comparing the T15 HSS micro-alloyed with Ce to that without Ce, the average equivalent diameter and maximum size of primary carbides decreased from 4.70 μm and 120.25 μm to 2.91 μm and 105.39 μm, with decrement 38.08% and 12.35%, respectively. The amount of V in MC primary carbides decreased by 6.16 at.%, and the morphology of these carbides changed from thick branches into spots. Moreover, the plasticity factor and fracture toughness of MC primary carbides increase from 0.47 and 1.63 MPa·m1/2 to 0.50 and 2.32 MPa·m1/2, respectively. Thus, the hardness, bending strength and tensile strength of as-cast T15 HSS increased from 48.88 HRC, 1491.06 MPa and 1122.41 MPa to 51.72 HRC, 1621.58 MPa and 1181.83 MPa, respectively.

Key wordsmetallic materials    T15 high speed steel    rare earth element    primary carbides    as-cast microstructure    mechanical property
收稿日期: 2024-03-18     
ZTFLH:  TG142.1  
基金资助:福建省科技计划STS配套项目(2023T3062);中国科学院赣江创新研究院自主部署项目(E355B0020);中国科学院青年创新促进会优秀会员项目(Y2021060);“兴辽英才计划”青年拔尖人才项目(XLYC2203158)
通讯作者: 胡小强,研究员,xqhu@imr.ac.cn,研究方向为稀土特殊钢研发与应用
Corresponding author: HU Xiaoqiang, Tel: (024)23971127, E-mail: xqhu@imr.ac.cn
作者简介: 屠后田,男,1998年生,硕士生
AlloyCSiMnPSCrMoWCoVCeFe
T15A1.630.120.0970.0080.00164.220.212.144.835.390Bal.
T15Ce1.580.130.0520.0080.00104.250.2112.114.825.450.021Bal.
表1  T15高速钢的化学成分
图1  两种不同Ce含量T15高速钢的金相组织
图2  两种不同Ce含量T15高速钢的X射线衍射谱
图3  T15A中一次碳化物的EBSD相分布和EDS能谱
图4  两种不同Ce含量T15高速钢中一次碳化物的SEM-BSE形貌照片和特征元素分布
AlloyfC / %fMC / %fM2C / %dMe / μmdMa / μml / μm
T15A15.5079.8220.184.70120.203.65
T15Ce13.8872.9627.042.91105.392.01
表2  T15高速钢铸态组织中一次碳化物的特征参数
Alloy%, atom fraction
VCrFeCoW
T15A69.58±2.65.05±0.644.79±0.630.29±0.1320.31±2.03
T15Ce63.42±6.466.02±1.439.29±2.030.49±0.4820.84±3.78
表3  MC一次碳化物的EDS能谱分析
图5  T15Ce高速钢中Ce元素的分布
图6  T15Ce高速钢中稀土夹杂物SEM-BSE的形貌和元素分布
图7  两种不同Ce含量T15高速钢的硬度和抗弯强度
图8  两种不同Ce含量T15高速钢的应力应变曲线
图9  两种不同Ce含量T15高速钢铸态的拉伸断口形貌
PhaseLattice structureSpace groupLattice parameter
M2CHexagonalP63/mmca = 2.955, c = 4.650
MCCubicFm3¯ma = 4.180
Ce2O2SHexagonalP3¯m1a = 3.976, c = 6.882
Ce2O3HexagonalP3¯m1a = 3.891, c = 6.059
表4  两类一次碳化物和稀土夹杂物的晶体学参数
[uvw]s[uvw]nd[uvw]sd[uvw]nθ / (°)δ / %
(1010)Ce2O3//(0110)M2C1¯21¯000013.8914.65007.82
1¯21¯11¯21¯27.2017.5205.273
00011¯21¯06.0595.9100
(1010)Ce2O2S//(0110)M2C1¯21¯000013.9764.650011.84
1¯21¯11¯21¯27.9477.5208.178
00011¯21¯06.8825.9100
(1010)Ce2O3//(110)MC1¯21¯00103.8914.18003.35
00011106.0595.9110
2¯1101117.2017.2402.340
(0001)Ce2O2S//(110)MC1¯21¯00103.9764.180010.25
1¯0100016.8865.9110
2¯1100127.9527.2405.266
表5  碳化物和稀土夹杂物的最小错配度
图10  两种不同Ce含量T15高速钢中MC碳化物的纳米压痕测量结果
1 Chen N L. Study of processing, microstructure and properties of T15 powder high speed steel [D]. Harbin: Harbin Institute of Technology, 2012
1 陈年莲. T15粉末高速钢制备及组织和性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012
2 Yu H, Ding F C, Wang E K. Investigation on rapidly solidified T15 high speed steel powders and its bulk material [J]. J. Iron Steel Res., 1989, (S1): 141
2 余 挥, 丁福昌, 王恩珂. 快速凝固T15高速钢粉末及其材料的研究 [J]. 钢铁研究学报, 1989, (S1): 141
3 Hu H B, Zhu L H, Duan Y M. In-situ study of microcrack initiation and propagation of M2 high speed steel [J]. Chin. J. Mater. Res. 2022, 36(5): 365
3 胡海波, 朱丽慧, 段元满 等. 原位研究M2高速钢微裂纹的萌生和扩展 [J]. 材料研究学报, 2022, 36(5): 365
doi: 10.11901/1005.3093.2021.405
4 Wei S, Zhu J, Xu L. Effects of vanadium and carbon on microstructures and abrasive wear resistance of high speed steel [J]. Tribol. Int., 2006, 39(7): 641
5 Fukaura K, Yokoyama Y, Yokoi D, et al. Fatigue of cold-work tool steels: Effect of heat treatment and carbide morphology on fatigue crack formation, life, and fracture surface observations [J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2004, 35A(4) : 1289
6 Zhang G Q, Yuan H, Jiao D L, et al. Microstructure evolution and mechanical properties of T15 high speed steel prepared by twin-atomiser spray forming and thermo-mechanical processing [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2012, 558: 566
7 Chaus A S, Porubski J. Effect of heat treatment on the structure of cast high-speed steel of type R6M5 modified with Tungsten additives [J]. Met. Sci. Heat Treat., 2014, 55(11-12): 583
8 Lima E P R, Das Neves M D M, Nogueira R A, et al. Effect of different tempering stages and temperatures on microstructure, tenacity and hardness of vacuum sintered HSS AISI T15 [R]. Buzios: IPEN-CNEN/SP. 2008
9 Zhou X F, Fang F, Tu Y Y, et al. Effect of Aluminum on the solidification microstructure of M2 high speed steel [J]. Acta Metall. Sin., 2014, 50(7): 769
doi: 10.3724/SP.J.1037.2013.00621
9 周雪峰, 方 峰, 涂益友 等. Al对M2高速钢凝固组织的影响 [J]. 金属学报, 2014, 50(7): 769
doi: 10.3724/SP.J.1037.2013.00621
10 Wang H B, Hou L G, Li Y B, et al. Effect of Niobium on the secondary precipitates and tempering resistance of spray-formed M3:2 high-speed steel [R]. Buzios: IPEN-CNEN/SP. 2008
11 Zhao B, Xia M, Wang J F, et al. Effect of Rare Earth elements on microstructure and hot workability of AISI T15 high speed steel [J]. ISIJ Int., 2022, 62(11): 2410
12 Zheng D L, Ma G J, Li J, et al. Effect of cerium on the primary carbides and inclusions in electroslag remelted M35 high speed steel [J]. J. Mater. Res. Technol., 2023, 24: 8252
13 Chen P, Liu Y, Ping X, et al. Influence mechanism of Y addition on microstructure, absorbability, mechanical properties of as-cast high speed steel [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2023, 863
14 Jiao W C, Li H B, Feng H, et al. Evolutions of micro- and macrostructure by cerium treatment in as-cast AISI M42 high-speed steel [J]. Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 2020, 51(5): 2240
15 Luo D, Xing G H, Zhou H L, et al. Segregation of S and P along grain boundary in high speed steels and cleaning action of RE elements [J]. Acta Metall. Sin., 1983, (4): 121
15 罗 迪, 邢国华, 邹惠良 等. S, P在高速钢晶界上的偏聚与稀土元素的净化作用 [J]. 金属学报, 1983, (4): 121
16 Yang W Y, Xie Z B, Wang K, et al. Study on Rare Earth modification of carbides structure of high speed steel [J]. Hebei Metall., 2021, (11): 32
16 杨文义, 谢志彬, 王 凯 等. 高速钢碳化物组织稀土改性研究 [J]. 河北冶金, 2021, (11): 32
17 Zhou X F, Fang F, Tu Y Y, et al. Carbide refinement in M42 high speedsteel by rare earth metals and spheroidizing treatment [J]. J. Mater.Sci. Technol., 2014, 30(4): 445
18 Wu Z J, Chen Z G, Xiang Y, et al. Effect of small amount of Ce addition on microstructure and mechanical properties of high-boron high speed steel [J]. Chin. J. Nonfer. Metal., 2013, 23(5): 1289
18 吴中佳, 陈志国, 向 勇 等. 少量铈对高硼高速钢微观组织与力学性能的影响 [J]. 中国有色金属学报, 2013, 23(5): 1289
19 Li D Z, Wang P, Chen X Q, et al. Low-oxygen rare earth steels [J]. Nat. Mater., 2022, 21(10): 1137
doi: 10.1038/s41563-022-01352-9 pmid: 36075967
20 Bramfitt B L. The effect of carbide and nitride additions on the het‐erogeneous nucleation behavior of liquid iron [J]. Metall. Trans., 1970, 1(7): 1987
21 Dukino R D, Swain M V. Comparative measurement of indentation fracture-toughness with Berkovich and Vickers indenters [J]. J. Am. Ceram. Soc., 1992, 75(12): 3299
22 Guo F. Effects of Rare Earth elements in solid solution on ferrite phase transformation and microstructures in steels [D]. Hefei: University of Science and Technology of China, 2022
22 郭 飞. 固溶稀土元素对钢中铁素体相变和显微组织的影响研究 [D]. 中国科学技术大学, 2022
23 Casellas D, Caro J, Molass S, et al. Fracture toughness of carbides in tool steels evaluated by nanoindentation [J]. Acta Mater., 2007, 55(13): 4277
24 Liu H H, Fu P X, Liu H W, et al. Effects of Rare Earth elements on micro‐structure evolution and mechanical properties of 718H pre-hard‐ened mold steel [J]. J. Mater. Sci. Technol., 2020, 50: 245
25 Zhu H, Zhu Q, Kosasih B, et al. Investigation on mechanical properties of high speed steel roll material by nanoindentation [J]. Mater. Res. Innov, 2013, 17: 35
[1] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] 崔捷, 李旭东, 杜宪, 李淑波, 杜文博. 轧制温度对Mg-4Zn-1Mn-1.2Ce合金板材微观组织及力学/导热性能的影响[J]. 材料研究学报, 2024, 38(9): 641-650.
[3] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[4] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[5] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[6] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[7] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[8] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[9] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[10] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[11] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[12] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[13] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[14] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[15] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.