|
|
聚卟啉/MXene基自支撑复合薄膜的光催化降解性能 |
霍朝晖( ), 吴豪杰, 何泳淇, 郑明秀, 詹曼姿, 张绮彤, 廖晓琳 |
广东第二师范学院化学与材料科学学院 广州 510303 |
|
Polyporphyrin/MXene-based Self-supporting Composite Films and Photocatalytic Degradation of Pollutants |
HUO Zhaohui( ), WU Haojie, HE Yongqi, ZHENG Mingxiu, ZHAN Manzi, ZHANG Qitong, LIAO Xiaolin |
School of Chemistry and Materials Science, GuangDong University of Education, Guangzhou 510303, China |
引用本文:
霍朝晖, 吴豪杰, 何泳淇, 郑明秀, 詹曼姿, 张绮彤, 廖晓琳. 聚卟啉/MXene基自支撑复合薄膜的光催化降解性能[J]. 材料研究学报, 2024, 38(12): 950-960.
Zhaohui HUO,
Haojie WU,
Yongqi HE,
Mingxiu ZHENG,
Manzi ZHAN,
Qitong ZHANG,
Xiaolin LIAO.
Polyporphyrin/MXene-based Self-supporting Composite Films and Photocatalytic Degradation of Pollutants[J]. Chinese Journal of Materials Research, 2024, 38(12): 950-960.
1 |
Afkhami A, Saber-Tehrani M, Bagheri H. Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution [J]. Desalination, 2010, 263(1-3): 240
|
2 |
Wang Z H, Wu Z K, Zhi X J, et al. TiO2/CTS/ATP adsorbent modification and its application in adsorption-ultrafiltration process for dye wastewater purification [J]. Environ. Sci. Pollut. Res., 2021, 28(42): 59963
|
3 |
Khataee A, Karimi A, Arefi-Oskoui S, et al. Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17 [J]. Ultrason. Sonochem., 2015, 22: 371
|
4 |
Liu Z H, Yue Y C, Qiu Y F, et al. Preparation of g-C3N4/Ag/BiOBr composite and photocatalytic reduction of nitrate [J]. Chin. J. Mater. Res., 2023, 37(10): 781
|
4 |
刘志华, 岳远超, 丘一帆 等. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮 [J]. 材料研究学报, 2023, 37(10): 781
|
5 |
Chen Y F, Qiu G, Xie S D. Application of TiO2/graphene photocatalysis technology in pollution control of Fengjiang River [J]. Environ. Prot. Technol., 2023, 29(3): 1
|
5 |
陈宜菲, 邱 罡, 谢树德. TiO2/石墨烯光催化技术在枫江污染治理中的应用研究 [J]. 环保科技, 2023, 29(3): 1
|
6 |
Hou J, Yang P Z, Zheng Q H, et al. Preparation and performance of Graphite/TiO2 composite photocatalyst [J]. Chin. J. Mater. Res., 2021, 35(9): 703
|
6 |
侯 静, 杨培志, 郑勤红 等. 石墨/TiO2复合光催化剂的制备和性能 [J]. 材料研究学报, 2021, 35(9): 703
|
7 |
Ge R Y, Li X Q, Kang S Z, et al. Highly efficient graphene oxide/porphyrin photocatalysts for hydrogen evolution and the interfacial electron transfer [J]. Appl. Catal., 2016, 187B: 67
|
8 |
Wang J M, Zheng Y, Peng T Y, et al. Asymmetric Zinc Porphyrin derivative-Sensitized graphitic carbon nitride for efficient visible-light-driven H2 production [J]. ACS Sustain. Chem. Eng., 2017, 5(9): 7549
|
9 |
Zhu K, Zhang M Q, Feng X Y, et al. A novel copper-bridged graphitic carbon nitride/porphyrin nanocomposite with dramatically enhanced photocatalytic hydrogen generation [J]. Appl. Catal., 2020, 268B: 118434
|
10 |
Da Silva E S, Moura N M M, Neves M G P M S, et al. Novel hybrids of graphitic carbon nitride sensitized with free-base meso-tetrakis(carboxyphenyl) porphyrins for efficient visible light photocatalytic hydrogen production [J]. Appl. Catal., 2018, 221B: 56
|
11 |
Wang L, Fan H Y, Bai F. Porphyrin-based photocatalysts for hydrogen production [J]. MRS Bull., 2020, 45(1): 49
|
12 |
Li Z, Jing Z Q, Xia C G. Review on application of metalloporphyrins in catalytic oxidation reactions [J]. Chin. J. Org. Chem., 2007, 27(1): 34
|
12 |
李 臻, 景震强, 夏春谷. 金属卟啉配合物的催化氧化应用研究进展 [J]. 有机化学, 2007, 27(1): 34
|
13 |
Sprick R S, Jiang J X, Bonillo B, et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution [J]. J. Am. Chem. Soc., 2015, 137(9): 3265
|
14 |
Germain J, Fréchet J M J, Svec F. Nanoporous polymers for hydrogen storage [J]. Small, 2009, 5(10): 1098
|
15 |
Zhang Y G, Riduan S N. Functional porous organic polymers for heterogeneous catalysis [J]. Chem. Soc. Rev., 2012, 41(6): 2083
|
16 |
Kaur P, Hupp J T, Nguyen S B T. Porous organic polymers in catalysis: opportunities and challenges [J]. ACS Catal., 2011, 1(7): 819
|
17 |
Li Y J, Wang L M, Gao Y, et al. Porous metalloporphyrinic nanospheres constructed from metal 5,10,15,20-tetraksi (4′-ethynylphenyl) porphyrin for efficient catalytic degradation of organic dyes [J]. RSC Adv., 2018, 8(14): 7330
|
18 |
Shah N, Wang X Y, Tian J. Recent advances in MXenes: a promising 2D material for photocatalysis [J]. Mater. Chem. Front., 2023, 7(19): 4184
|
19 |
Nan J X, Guo X, Xiao J, et al. Nanoengineering of 2D MXene-based materials for energy storage applications [J]. Small, 2021, 17(9): 1902085
|
20 |
Wu Z T, Shang T X, Deng Y Q, et al. The assembly of MXenes from 2D to 3D [J]. Adv. Sci., 2020, 7(7): 1903077
|
21 |
Tang J Y, Huang X, Qiu T F, et al. Interlayer space engineering of MXenes for electrochemical energy storage applications [J]. Chem. Eur. J., 2021, 27(6): 1921
|
22 |
Li Z J, Dai J, Li Y R, et al. Intercalation-deintercalation design in MXenes for high-performance supercapacitors [J]. Nano Res., 2022, 15: 3213
|
23 |
Yang K, Luo M, Zhang D T, et al. Ti3C2T x /carbon nanotube/porous carbon film for flexible supercapacitor [J]. Chem. Eng. J., 2022, 427: 132002
|
24 |
Lian S H, Li G H, Song F, et al. Surfactant-free self-assembled MXene/carbon nanotubes hybrids for high-rate sodium- and potassium-ion storage [J]. J. Alloys Compd., 2022, 901: 163426
|
25 |
Wang R C, Luo S H, Xiao C, et al. MXene-carbon nanotubes layer-by-layer assembly based on-chip micro-supercapacitor with improved capacitive performance [J]. Electrochim. Acta, 2021, 386: 138420
|
26 |
Zhou Z H, Liu J Z, Zhang X X, et al. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding [J]. Adv. Mater. Interfaces, 2019, 6(6): 1802040
|
27 |
Deng Y Q, Shang T X, Wu Z T, et al. Fast gelation of Ti3C2T x MXene initiated by metal ions [J]. Adv. Mater., 2019, 31(43): 1902432
|
28 |
Fan Q, Zhao R Z, Yi M J, et al. Ti3C2-MXene composite films functionalized with polypyrrole and ionic liquid-based microemulsion particles for supercapacitor applications [J]. Chem. Eng. J., 2022, 428: 131107
|
29 |
Li T, Ding B, Wang J, et al. Sandwich-structured ordered mesoporous polydopamine/MXene hybrids as high-performance anodes for lithium-ion batteries [J]. ACS Appl. Mater. Interfaces, 2020, 12(13): 14993
|
30 |
Liu H, Zhang X, Zhu Y F, et al. Electrostatic self-assembly of 0D-2D SnO2 quantum dots/Ti3C2T x MXene hybrids as anode for lithium-ion batteries [J]. Nano-Micro Lett., 2019, 11: 65
|
31 |
Liu Y T, Zhang P, Sun N, et al. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage [J]. Adv. Mater., 2018, 30(23): 1707334
|
32 |
Mao X Q, Zou Y J, Xu F, et al. Three-dimensional self-supporting Ti3C2 with MoS2 and Cu2O nanocrystals for high-performance flexible supercapacitors [J]. ACS Appl. Mater. Interfaces, 2021, 13(19): 22664
|
33 |
Zhang T Z, Wang R, Xiao J P, et al. CoS nanowires grown on Ti3C2T x are promising electrodes for supercapacitors: high capacitance and remarkable cycle capability [J]. J. Colloid Interface Sci., 2021, 602: 123
|
34 |
Li J F, Han L, Li Y Q, et al. MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries [J]. Chem. Eng. J., 2020, 380: 122590
|
35 |
Li C Y, Zhang D D, Cao J, et al. Ni3S2 nanoparticles anchored on d-Ti3C2 nanosheets with enhanced sodium storage [J]. ACS Appl. Energy Mater., 2021, 4(3): 2593
|
36 |
Wang H Q, Zhao Y X, Gou L, et al. Rational construction of densely packed Si/MXene composite microspheres enables favorable sodium storage [J]. Rare Met., 2022, 41(5): 1626
|
37 |
Zhu X D, Xie Y, Liu Y T. Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions [J]. J. Mater. Chem., 2018, 6A(43): 21255
|
38 |
Guo X, Zhang W X, Zhang J Q, et al. Boosting sodium storage in two-dimensional phosphorene/Ti3C2T x MXene nanoarchitectures with stable fluorinated interphase [J]. ACS Nano, 2020, 14(3): 3651
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|