Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (12): 950-960    DOI: 10.11901/1005.3093.2024.050
  研究论文 本期目录 | 过刊浏览 |
聚卟啉/MXene基自支撑复合薄膜的光催化降解性能
霍朝晖(), 吴豪杰, 何泳淇, 郑明秀, 詹曼姿, 张绮彤, 廖晓琳
广东第二师范学院化学与材料科学学院 广州 510303
Polyporphyrin/MXene-based Self-supporting Composite Films and Photocatalytic Degradation of Pollutants
HUO Zhaohui(), WU Haojie, HE Yongqi, ZHENG Mingxiu, ZHAN Manzi, ZHANG Qitong, LIAO Xiaolin
School of Chemistry and Materials Science, GuangDong University of Education, Guangzhou 510303, China
引用本文:

霍朝晖, 吴豪杰, 何泳淇, 郑明秀, 詹曼姿, 张绮彤, 廖晓琳. 聚卟啉/MXene基自支撑复合薄膜的光催化降解性能[J]. 材料研究学报, 2024, 38(12): 950-960.
Zhaohui HUO, Haojie WU, Yongqi HE, Mingxiu ZHENG, Manzi ZHAN, Qitong ZHANG, Xiaolin LIAO. Polyporphyrin/MXene-based Self-supporting Composite Films and Photocatalytic Degradation of Pollutants[J]. Chinese Journal of Materials Research, 2024, 38(12): 950-960.

全文: PDF(11543 KB)   HTML
摘要: 

以八乙基卟啉锌和4,4-联吡啶为单体、以多层Ti3C2 (MXene自支撑膜)为载体,用阳极氧化法制备聚卟啉/MXene基自支撑复合薄膜光催化剂,使用扫描电子显微镜(SEM)、傅立叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)、电化学阻抗谱(EIS)、光电化学测试(I-t)等手段对其表征,研究了这种光催化剂对亚甲基蓝的降解性能。结果表明:将聚卟啉负载在MXene薄膜上可促进光生电子对的分离从而提高其催化效率和回收重复使用。用阳极氧化法将聚卟啉负载在MXene上,可增大MXene层间距、避免MXene重堆叠和提高MXene的孔洞率。在聚卟啉/MXene基复合薄膜的面积为1 cm2、亚甲基蓝的初始浓度为10 mg/L的条件下,光照80 min后复合薄膜对亚甲基蓝的降解率高达98.00%。在光催化降解亚甲基蓝过程中,这种光催化剂中起主要作用的是自由基h+

关键词 复合材料卟啉MXene自支撑膜阳极氧化法光催化亚甲基蓝    
Abstract

Herein, photocatalyst composite films of polyporphyrin/MXene were prepared via anodic oxidation method with octaethyl porphyrin zinc and 4,4-bipyridine as monomers, and multi-layered Ti3C2 as MXene self-supporting film, with the aim to prepare a novel material with high-photocatalysis efficiency for degradation of dyestuffs wastewaters. The prepared catalyst was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, photoelectrochemical testing etc. The photocatalytic degradation effect of the synthesized self-supporting composite film photocatalyst on methylene blue was assessed through photocatalytic degradation testing. The results indicate that loading polyporphyrin onto MXene thin films can promote the separation of photo generated electron pairs, improve the efficiency of polyporphyrin photocatalysis, and achieve reusable recycling of materials. The increase in interlayer spacing of MXene was achieved by loading polyporphyrin onto the MXene through anodic oxidation, effectively solving the problem related with restacking and increasing the porosity of MXene. When the area of the polyporphyrin/MXene based composite film is 1 cm2 and the initial concentration of methylene blue is 10 mg/L, the degradation rate of methylene blue by the composite material reaches 98% after 80 minutes of illumination. The capture experiment shows that the main free radical playing a role in the photocatalytic degradation of methylene blue is h+.

Key wordscomposite material    porphyrin    MXene self-supporting membrane    anodic oxidation method    photocatalytic    Methylene blue
收稿日期: 2024-01-22     
ZTFLH:  O643.36  
基金资助:广东省基础与应用基础研究基金(粤穗联合基金)(2023A1515111132);广州市基础与应用基础项目(202102020424);大学生创新创业训练计划(202414278081);广东省普通高校重点领域专项(2023ZDZX4043)
通讯作者: 霍朝晖,副教授,huozhaohui@gdei.edu.cn,研究方向为光电催化、电分析
Corresponding author: HUO Zhaohui, Tel: 13422197623, E-mail: huozhaohui@gdei.edu.cn
作者简介: 霍朝晖,女,1986年生,博士
图1  聚卟啉/MXene复合薄膜的合成示意图
图2  Ti3AlC2、Ti3C2、MXene(Ti3C2)膜截面形貌图、MXene薄膜截面形貌图和聚卟啉/MXene复合薄膜截面的SEM照片
图3  聚卟啉/MXene复合薄膜的FT-IR谱
图4  聚卟啉/MXene复合薄膜的XRD谱
图5  Ti 2p、O 1s、N 1s、C 1s、Zn 2p的XPS谱
图6  聚卟啉/MXene复合薄膜的EIS谱和I-t测试曲线
Type of adsorption kinetics

Experimental value of

qe / mg·g-1

Calculated value of

qe / mg·g-1

K1/ min-1K2/ g·mg-1·min-1R2
Pseudo first order kinetics4.32751.926458.0185-0.9892
Pseudo second order kinetics4.32753.2457-0.98920.2719
表1  亚甲基蓝在卟啉/MXene基复合膜上的吸附动力学拟合数据
图7  吸附动力学拟合曲线及其表达式
图8  亚甲基蓝的标准曲线和自降解
图9  H2O2对光催化剂降解性能的影响、不同材料对亚甲基蓝的光催化降解率、不同材料对亚甲基蓝的光催化降解性能以及不同自由基捕获剂存在下聚卟啉/MXene复合薄膜对亚甲基蓝的降解率
图10  聚卟啉/MXene复合薄膜对亚甲基蓝的光催化降解机理
图11  聚卟啉/MXene复合薄膜的循环使用寿命
1 Afkhami A, Saber-Tehrani M, Bagheri H. Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution [J]. Desalination, 2010, 263(1-3): 240
2 Wang Z H, Wu Z K, Zhi X J, et al. TiO2/CTS/ATP adsorbent modification and its application in adsorption-ultrafiltration process for dye wastewater purification [J]. Environ. Sci. Pollut. Res., 2021, 28(42): 59963
3 Khataee A, Karimi A, Arefi-Oskoui S, et al. Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17 [J]. Ultrason. Sonochem., 2015, 22: 371
4 Liu Z H, Yue Y C, Qiu Y F, et al. Preparation of g-C3N4/Ag/BiOBr composite and photocatalytic reduction of nitrate [J]. Chin. J. Mater. Res., 2023, 37(10): 781
4 刘志华, 岳远超, 丘一帆 等. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮 [J]. 材料研究学报, 2023, 37(10): 781
5 Chen Y F, Qiu G, Xie S D. Application of TiO2/graphene photocatalysis technology in pollution control of Fengjiang River [J]. Environ. Prot. Technol., 2023, 29(3): 1
5 陈宜菲, 邱 罡, 谢树德. TiO2/石墨烯光催化技术在枫江污染治理中的应用研究 [J]. 环保科技, 2023, 29(3): 1
6 Hou J, Yang P Z, Zheng Q H, et al. Preparation and performance of Graphite/TiO2 composite photocatalyst [J]. Chin. J. Mater. Res., 2021, 35(9): 703
6 侯 静, 杨培志, 郑勤红 等. 石墨/TiO2复合光催化剂的制备和性能 [J]. 材料研究学报, 2021, 35(9): 703
7 Ge R Y, Li X Q, Kang S Z, et al. Highly efficient graphene oxide/porphyrin photocatalysts for hydrogen evolution and the interfacial electron transfer [J]. Appl. Catal., 2016, 187B: 67
8 Wang J M, Zheng Y, Peng T Y, et al. Asymmetric Zinc Porphyrin derivative-Sensitized graphitic carbon nitride for efficient visible-light-driven H2 production [J]. ACS Sustain. Chem. Eng., 2017, 5(9): 7549
9 Zhu K, Zhang M Q, Feng X Y, et al. A novel copper-bridged graphitic carbon nitride/porphyrin nanocomposite with dramatically enhanced photocatalytic hydrogen generation [J]. Appl. Catal., 2020, 268B: 118434
10 Da Silva E S, Moura N M M, Neves M G P M S, et al. Novel hybrids of graphitic carbon nitride sensitized with free-base meso-tetrakis(carboxyphenyl) porphyrins for efficient visible light photocatalytic hydrogen production [J]. Appl. Catal., 2018, 221B: 56
11 Wang L, Fan H Y, Bai F. Porphyrin-based photocatalysts for hydrogen production [J]. MRS Bull., 2020, 45(1): 49
12 Li Z, Jing Z Q, Xia C G. Review on application of metalloporphyrins in catalytic oxidation reactions [J]. Chin. J. Org. Chem., 2007, 27(1): 34
12 李 臻, 景震强, 夏春谷. 金属卟啉配合物的催化氧化应用研究进展 [J]. 有机化学, 2007, 27(1): 34
13 Sprick R S, Jiang J X, Bonillo B, et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution [J]. J. Am. Chem. Soc., 2015, 137(9): 3265
14 Germain J, Fréchet J M J, Svec F. Nanoporous polymers for hydrogen storage [J]. Small, 2009, 5(10): 1098
15 Zhang Y G, Riduan S N. Functional porous organic polymers for heterogeneous catalysis [J]. Chem. Soc. Rev., 2012, 41(6): 2083
16 Kaur P, Hupp J T, Nguyen S B T. Porous organic polymers in catalysis: opportunities and challenges [J]. ACS Catal., 2011, 1(7): 819
17 Li Y J, Wang L M, Gao Y, et al. Porous metalloporphyrinic nanospheres constructed from metal 5,10,15,20-tetraksi (4′-ethynylphenyl) porphyrin for efficient catalytic degradation of organic dyes [J]. RSC Adv., 2018, 8(14): 7330
18 Shah N, Wang X Y, Tian J. Recent advances in MXenes: a promising 2D material for photocatalysis [J]. Mater. Chem. Front., 2023, 7(19): 4184
19 Nan J X, Guo X, Xiao J, et al. Nanoengineering of 2D MXene-based materials for energy storage applications [J]. Small, 2021, 17(9): 1902085
20 Wu Z T, Shang T X, Deng Y Q, et al. The assembly of MXenes from 2D to 3D [J]. Adv. Sci., 2020, 7(7): 1903077
21 Tang J Y, Huang X, Qiu T F, et al. Interlayer space engineering of MXenes for electrochemical energy storage applications [J]. Chem. Eur. J., 2021, 27(6): 1921
22 Li Z J, Dai J, Li Y R, et al. Intercalation-deintercalation design in MXenes for high-performance supercapacitors [J]. Nano Res., 2022, 15: 3213
23 Yang K, Luo M, Zhang D T, et al. Ti3C2T x /carbon nanotube/porous carbon film for flexible supercapacitor [J]. Chem. Eng. J., 2022, 427: 132002
24 Lian S H, Li G H, Song F, et al. Surfactant-free self-assembled MXene/carbon nanotubes hybrids for high-rate sodium- and potassium-ion storage [J]. J. Alloys Compd., 2022, 901: 163426
25 Wang R C, Luo S H, Xiao C, et al. MXene-carbon nanotubes layer-by-layer assembly based on-chip micro-supercapacitor with improved capacitive performance [J]. Electrochim. Acta, 2021, 386: 138420
26 Zhou Z H, Liu J Z, Zhang X X, et al. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding [J]. Adv. Mater. Interfaces, 2019, 6(6): 1802040
27 Deng Y Q, Shang T X, Wu Z T, et al. Fast gelation of Ti3C2T x MXene initiated by metal ions [J]. Adv. Mater., 2019, 31(43): 1902432
28 Fan Q, Zhao R Z, Yi M J, et al. Ti3C2-MXene composite films functionalized with polypyrrole and ionic liquid-based microemulsion particles for supercapacitor applications [J]. Chem. Eng. J., 2022, 428: 131107
29 Li T, Ding B, Wang J, et al. Sandwich-structured ordered mesoporous polydopamine/MXene hybrids as high-performance anodes for lithium-ion batteries [J]. ACS Appl. Mater. Interfaces, 2020, 12(13): 14993
30 Liu H, Zhang X, Zhu Y F, et al. Electrostatic self-assembly of 0D-2D SnO2 quantum dots/Ti3C2T x MXene hybrids as anode for lithium-ion batteries [J]. Nano-Micro Lett., 2019, 11: 65
31 Liu Y T, Zhang P, Sun N, et al. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage [J]. Adv. Mater., 2018, 30(23): 1707334
32 Mao X Q, Zou Y J, Xu F, et al. Three-dimensional self-supporting Ti3C2 with MoS2 and Cu2O nanocrystals for high-performance flexible supercapacitors [J]. ACS Appl. Mater. Interfaces, 2021, 13(19): 22664
33 Zhang T Z, Wang R, Xiao J P, et al. CoS nanowires grown on Ti3C2T x are promising electrodes for supercapacitors: high capacitance and remarkable cycle capability [J]. J. Colloid Interface Sci., 2021, 602: 123
34 Li J F, Han L, Li Y Q, et al. MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries [J]. Chem. Eng. J., 2020, 380: 122590
35 Li C Y, Zhang D D, Cao J, et al. Ni3S2 nanoparticles anchored on d-Ti3C2 nanosheets with enhanced sodium storage [J]. ACS Appl. Energy Mater., 2021, 4(3): 2593
36 Wang H Q, Zhao Y X, Gou L, et al. Rational construction of densely packed Si/MXene composite microspheres enables favorable sodium storage [J]. Rare Met., 2022, 41(5): 1626
37 Zhu X D, Xie Y, Liu Y T. Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions [J]. J. Mater. Chem., 2018, 6A(43): 21255
38 Guo X, Zhang W X, Zhang J Q, et al. Boosting sodium storage in two-dimensional phosphorene/Ti3C2T x MXene nanoarchitectures with stable fluorinated interphase [J]. ACS Nano, 2020, 14(3): 3651
[1] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[2] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
[3] 黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.
[4] 谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584.
[5] 郝子恒, 郑刘梦晗, 张妮, 蒋恩桐, 王国政, 杨继凯. WO3/PtNiO电极电致变色器件的性能[J]. 材料研究学报, 2024, 38(8): 569-575.
[6] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
[7] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[8] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[9] 徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
[10] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[11] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[12] 庄超君, 胡俊辉, 鄢瑛. 微纤复合硼掺杂碳纳米管膜催化剂的制备及其对苯酚的降解性能[J]. 材料研究学报, 2024, 38(12): 893-901.
[13] 武静, 张子怡, 韩旭, 侯星延, 李雪艳, 李莎莎, 刘雯, 李鹏. S/NiFeP/KB复合材料锂硫电池正极的性能[J]. 材料研究学报, 2024, 38(11): 828-836.
[14] 罗洪旭, 赵永华, 张家慷, 冯效迁, 张启俭, 王欢. 双功能催化剂(Cu-Co/X-MMT)的制备和性能[J]. 材料研究学报, 2024, 38(11): 872-880.
[15] 李朝阳, 薛怿, 阳泽濠, 赵庆志, 彭砚双, 刘勇, 杨建平, 张辉. 聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 材料研究学报, 2024, 38(1): 33-42.