材料研究学报, 2024, 38(12): 941-949 DOI: 10.11901/1005.3093.2023.620

研究论文

Al基复合涂层干摩擦磨损的有限元分析

王慧明1, 王金龙1, 李应举2, 张宏毅3, 吕晓仁,1

1 沈阳工业大学机械工程学院 沈阳 110870

2 中国科学院金属研究所 沈阳 110179

3 沈阳航天三菱汽车发动机制造有限公司 沈阳 110179

Finite Element Analysis of Dry Friction Wear of Al-based Composite Coatings

WANG Huiming1, WANG Jinlong1, LI Yingju2, ZHANG Hongyi3, LV Xiaoren,1

1 College of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China

2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110179, China

3 Shenyang Aerospace Mitsubishi Motors Automobile Engine Manufacturing Co., Ltd., Shenyang 110179, China

通讯作者: 吕晓仁,教授,xrlvsut@126.com,研究方向为材料表面工程技术

责任编辑: 吴岩

收稿日期: 2023-12-28   修回日期: 2024-02-26  

基金资助: 国防科技重点实验室基金(JCKY61420052021)

Corresponding authors: LV Xiaoren, Tel: 13504077230, E-mail:xrlvsut@126.com

Received: 2023-12-28   Revised: 2024-02-26  

Fund supported: National Defense Science and Technology Key Laboratory Fund(JCKY61420052021)

作者简介 About authors

王慧明,女,1982年生,副教授

摘要

用冷喷涂技术在AZ91镁合金基体上制备出不同Al2O3含量(0%、15%、30%、45%)的复合涂层,测量Al2O3的沉积效率和涂层的孔隙率,进行往复干摩擦磨损实验并计算磨损沟壑体积,研究了Al2O3含量、载荷、频率对Al基复合涂层摩擦磨损行为的影响。建立Al基复合涂层的有限元模型,用嵌入Archard模型的摩擦磨损子程序得到了有限元磨损量仿真值并将其与磨损实验值对比。结果表明,随着Al2O3含量的提高复合涂层的孔隙率降低,Al2O3颗粒的沉积效率和耐磨性提高。在载荷为2 N、频率为1 Hz条件下Al2O3含量为0%、30%、45%的Al基复合涂层其有限元磨损量仿真值与实验值的差小于4%,证明了有限元模型的正确性。在此工况下用该模型计算出Al2O3含量为15%的涂层其有限元磨损量的仿真值为0.0249 mm3,与试验磨损量的差为5.9574%,表明此模型具有普适性。

关键词: 材料表面与界面; 镁合金; 冷喷涂; 摩擦磨损; 有限元分析

Abstract

Al-based composite coatings with different Al2O3 contents (0%, 15%, 30%, 45%) were prepared on AZ91 Mg-alloy substrate by cold spraying technique, the deposition efficiency of Al2O3 and the porosity of the coatings were measured, and their reciprocating dry friction wear performance was examined in terms of wear gouge volume. Meanwhile, the effect of Al2O3 content, the applied load, and frequency on the friction and wear behavior of Al-based composite coatings were investigated. A finite element model of the Al-based composite coating was established, and the simulated values of the finite element wear volume were obtained by using the friction and wear subroutine (UMESHMOTION) embedded with the Archard model, which then were compared with those acquired from the friction and wear experiments. The results show that with the increasing Al2O3 content, the porosity of the composite coatings decreases, while the deposition efficiency of Al2O3 particles, and thereby the wear resistance of coatings increases. The simulated value of the finite element wear calculated by the model under this condition is 0.0249 mm3 for the coating with 15% Al2O3with a difference of 5.9574% compared to that acquired from the wear experiments, indicating the universality of the proposed model.

Keywords: surface and interface in the materials; magnesium alloy; cold spray coating; friction and wear; FEA

PDF (5682KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王慧明, 王金龙, 李应举, 张宏毅, 吕晓仁. Al基复合涂层干摩擦磨损的有限元分析[J]. 材料研究学报, 2024, 38(12): 941-949 DOI:10.11901/1005.3093.2023.620

WANG Huiming, WANG Jinlong, LI Yingju, ZHANG Hongyi, LV Xiaoren. Finite Element Analysis of Dry Friction Wear of Al-based Composite Coatings[J]. Earth Science, 2024, 38(12): 941-949 DOI:10.11901/1005.3093.2023.620

镁合金质轻、比强度高和导热性好,在航天、电子、医疗、汽车、3C等领域得到了广泛的应用。但是,用镁合金制造的运动部件耐磨性较差[1~4],可采用冷喷涂、热喷涂、激光表面处理、等离子注入和微弧氧化等表面处理技术提高其耐磨性[5~7]。冷喷涂技术(Cold spray)是将粉末材料喷射到基材表面,形成均匀致密的涂层[8~10]。冷喷涂属于低温喷涂,适用于多材料和形状复杂的部件且可精密控制[11~14]

制备冷喷涂复合涂层使用的基底,有Al基、Cu基、Ti基和Ni基,增强相有Al2O3和SiC陶瓷粉末。在Al基中添加Al2O3陶瓷粉末能消除喷嘴堵塞,去除表面杂质、氧化层和提高表面的粗糙度,起“原位夯实”作用[15~17]。陈金雄[18]研究了AZ31镁合金冷喷涂纯Al和Al基复合涂层的摩擦学性能,发现AZ31镁合金和纯Al涂层的体积磨损率比Al-50% Al2O3复合涂层分别提高了约5倍和6倍。Qiu等[19]用冷喷涂法制备了Al2O3粉末增强A380铝合金复合涂层,随着Al2O3含量的提高涂层的孔隙率降低到约1%,且其摩擦系数和磨损率远低于纯A380涂层。Shockley等[20]用冷喷涂技术制备了Al-Al2O3复合涂层,Al2O3含量为50%的复合涂层其磨损率是纯Al涂层的18.69%。这表明,Al2O3粉末的加入可提高Al基复合涂层的耐磨性。

有限元模拟分析有材料配比及参数可调,节约成本等优势,并能为实验研究提供理论支撑。本文用冷喷涂技术在AZ91镁合金基体上制备不同Al2O3含量(0%、15%、30%、45%)的Al基复合涂层,测量涂层的孔隙率和Al2O3沉积效率并进行往复干摩擦磨损实验,研究Al2O3含量、载荷、频率对Al基复合涂层摩擦磨损行为的影响。基于ABAQUS有限元软件和PYTHON脚本建立不同Al2O3含量的Al基复合涂层有限元模型,在载荷为2 N频率为1 Hz条件下进行Al基复合涂层往复摩擦磨损过程的仿真以与实验结果比较。

1 实验方法

1.1 实验用材料

冷喷涂实验用基体是用熔铸法制备的AZ91镁合金,其化学成分列于表1。冷喷涂材料是球形纯Al粉末(纯度为99.98%)和椭球形Al2O3粉末(纯度为99.5%)。

表1   AZ91镁合金的化学成分

Table 1  Chemical composition of AZ91 magnesium alloy (mass fraction, %)

ElementAlZnMg
Content91Bal.

新窗口打开| 下载CSV


1.2 Al基复合涂层的制备

用冷喷涂(采用中国科学院金属研究所自主研发的IMR1000系统)制备不同Al2O3含量(质量分数分别为0%、15%、30%、45%)的Al基复合涂层,载气为压缩空气。冷喷涂工艺参数列于表2。用砂纸将冷喷涂复合涂层打磨到Ra0.2。用金相显微镜拍摄涂层截面图像,使用Image J软件测试涂层的孔隙率和Al2O3粉末的沉积效率。

表2   冷喷涂工艺参数

Table 2  Processing parameters of cold spray

Spray pressure

/ MPa

Gas temperature

/ oC

Powder feeding voltage / mVPowder feeding rate / g·min-1Nozzle distance / mm
1.6230283030

新窗口打开| 下载CSV


1.3 摩擦磨损性能的测试

使用布鲁克TriboLab摩擦磨损试验机进行往复干摩擦试验,对磨副是直径为4 mm的氮化硅陶瓷球。载荷分别为2、4、8、10 N,频率分别为0.5、1、2 Hz,实验的总行程为1200 mm。使用2300A-R表面粗糙度测量仪测量磨损沟壑横截面轮廓,使用MATLAB计算沟壑的平均横截面积,将其与磨痕长度相乘即为磨损沟壑体积[21]。由于复合涂层中有孔隙,将其从沟壑体积中扣除即可得Al基复合涂层磨损量。与AZ91镁合金基体相比Al基复合涂层的耐磨性提高率ε

ε=1ni=1nV1, i-V2, iV1, i×100%

式中n为数据组数,V1, i 为第i组AZ91镁合金基体磨损量(mm3),V2, i 为第i组Al基复合涂层磨损量(mm3)。

2 有限元磨损计算方程及实现方法

2.1 有限元磨损方程的建立

使用Archard模型,Al基复合涂层的磨损量V(mm3)为

V=KFsH

式中K为无量纲磨损系数,F为法向载荷(N),s为滑动距离(mm),H为材料硬度(N/mm2)。

有限元中节点接触面积的有量纲磨损系数k(mm2/N)可表示为

k=KH

于是 式(2)可改写为

V=kFs

由此可得

h=kps

式中h为磨损深度(mm),p为接触压力(MPa)。

2.2 磨损深度的计算

使用通用静力学模块求解磨损过程中每个增量步的深度,以确保每个增量步为准静态过程。在摩擦磨损子程序UMESHMOTION中输入磨损系数,通过子程序读取求解过程的节点数据,代入Archard公式计算出节点偏移量增量,使用ALE自适应网格更新几何模型,完成增量步内的循环过程。磨损仿真流程,在图1中给出。经多次循环后得到磨损深度,在增量步内接触压力、滑移距离和磨损系数是常量。根据 式(5),每个增量步的磨损过程离散为

Δh=kpΔs

图1

图1   磨损仿真流程

Fig.1   Wear simulation flow chart


经多次往复循环,磨损深度为

h=i=1NΔh=i=1NkpΔs

式中N为循环次数。

3 磨损三维仿真模型的建立

与涂层和基体相比,直径为4 mm的Si3N4对磨副弹性模量比较高,故可将其建模为解析刚体。为了便于施加载荷,在ABAQUS部件模块中将参考点设置在Si3N4球中心位置。为了减少运算时间,将涂层和基体的长宽高分别设置为12 mm × 1.2 mm × 0.24 mm和12 mm × 1.2 mm × 0.08 mm。图2给出了SOLIDWORKS往复摩擦磨损的三维实体模型,Si3N4小球沿着涂层做正弦往复运动。在建模过程中,假定复合涂层是各向同性弹性的且其摩擦系数为常量。

图2

图2   SOLIDWORKS往复摩擦磨损的三维实体模型

Fig.2   SOLIDWORKS 3D solid model of reciprocating dry friction wear


3.1 Al基复合涂层模型的使用

冷喷涂复合涂层中Al与Al2O3粉末的结合能很大,因此在有限元仿真的磨损过程中Al2O3粉末不会从Al基体脱落[22, 23]。根据这一特性,使用PYTHON语言在ABAQUS软件中编写Al和Al2O3含量可控制的RMA (Random material assign)随机网格材料指派脚本。划分网格,输入涂层Al2O3含量,获得网格材料指派模型,定义Al和Al2O3参数,得到不同Al2O3含量的Al基复合涂层模型(图3),材料参数列于表3

图3

图3   Al基复合涂层的模型

Fig.3   Al-based composite coating model (a) 0% Al2O3; (b) 15% Al2O3; (c) 30% Al2O3; (d) 45% Al2O3


表3   模型材料的属性

Table 3  Model material properties

SampleMaterialElastic modulus / MPaΜρ / t·mm-3
CoatingAl700000.332.7 × 10-9
Al2O33750000.233.5 × 10-9
Grinding pairSi3N43200000.263.15 × 10-9
SubtrateAZ91450000.351.78 × 10-9

新窗口打开| 下载CSV


3.2 往复摩擦磨损模型的设置

网格模块中,镁合金基体和复合涂层的网格,采用沙漏控制增强的八节点线性六面体单元(C3D8R)满足磨损分析中的Lagrange-Euler自适应网格(Arbitrary lagrangian eulerian adaptive meshing,简写为ALE)节点的需求,同时降低求解过程复杂性与随机性。经网格无关性验证并考虑模型接触区域的网格数量,接触区域网格长宽高确定为0.05 mm × 0.05 mm × 0.08 mm。

在相互作用模块中,采用面-面接触控制,将Si3N4表面设为主表面,将涂层表面设为从表面。设置两个接触属性,切向行为选择罚函数,其摩擦系数由实验测得;选择法向行为为硬接触,约束执行为默认。

在分析步模块中,为了解决物体变形和流动的问题选取磨损区域涂层的网格为ALE[24,25],如图4所示。为了保证模型计算结果的准确性,选择网格重绘算法控制和强度控制,频率设置为1,强度设置为5。

图4

图4   AlE网格区域

Fig.4   AlE grid area


在载荷模块中,约束磨损部件下底面,Si3N4小球在y轴方向上移动实现2 N的线性法向载荷的施加。载荷施加稳定后施加循环位移约束,开启Si3N4小球的往复运动。

设置上述参数后,调用写入Archard模型的UMESHMOTION子程序输入磨损系数K值,读取ABAQUS有限元软件节点数据和获取磨损深度和方向,最终更新ALE网格。经过多次循环后,在后处理模块中可得Al基复合涂层有限元磨损量的仿真值。

有限元磨损量仿真与磨损量的实验实测值的差e可表示为

e=V2'-V2V2×100%

式中V2'为Al基复合涂层磨损量仿真值(mm3),V2为涂层试验磨损量(mm3)。

由于在大载荷条件下ALE网格方法网格易出现畸变和不收敛,选择2 N、1 Hz的工况作为有限元摩擦磨损仿真条件。载荷超过2 N时,需调整网格的尺寸,并验证网格无关化。本文的有限元磨损仿真次数与往复试验次数相同,因此不必考虑有限元加速系数对模拟仿真结果的影响。

4 结果和讨论

4.1 涂层的孔隙率和Al2O3 沉积效率

图5给出了不同Al2O3含量Al基复合涂层的孔隙率。可以看出,随着Al2O3含量的提高涂层的孔隙率逐渐降低[26],因为制备纯Al涂层使用的Al粉塑性变形不充分,在粉末间容易形成孔隙。在Al基复合涂层中,Al2O3粉末不断冲击预沉积的粉末,出现“原位夯实效应”和产生了二次喷丸。强烈的塑性变形使沉积粉末结合得更加紧密,降低了涂层中的孔隙率和提高了涂层的致密性[27]

图5

图5   Al基复合涂层的孔隙率

Fig.5   Al-based composite coating porosity


图6给出了Al基复合涂层Al2O3粉末的沉积效率。沉积效率是涂层中Al2O3粉末的质量分数[20]。从图6可见,复合涂层中Al2O3粉末的质量分数远低于Al与Al2O3的混合配比。Al2O3粉末是陶瓷材料,在冷喷涂过程中粘附Al粉末上。但是,预沉积的Al2O3粉末在碰撞中反弹,使复合涂层Al2O3粉末的沉积效率较低[28]

图6

图6   复合涂层Al2O3沉积效率

Fig.6   Composite coating Al2O3 deposition efficiency


4.2 复合涂层的摩擦系数

表4列出了AZ91镁合金基体和Al基复合涂层的摩擦系数随载荷和频率的变化。频率(速度)不变时,随着载荷的增大摩擦系数逐渐减小,因为较大的载荷使Al、Mg等塑性材料发生滑移[29]。载荷不变时,摩擦系数随着频率(速度)的提高而减小。频率的提高使内磨损表面在短时间内生成剪切的氧化薄膜,从而使摩擦系数降低[30]。在载荷和频率(速度)相同的条件下,随着Al基中Al2O3含量的提高涂层表面的抗粘着性能提高和摩擦系数降低[31]

表4   AZ91镁合金基体和冷喷涂涂层的摩擦系数随载荷和频率的变化

Table 4  Friction coefficient of AZ91 magnesium alloy substrate and cold spray coating changes with load and frequency

Load / NFrequency / HzFriction coefficient
AZ91Al15% Al2O330% Al2O345% Al2O3
210.280.950.820.690.52
40.250.920.790.660.49
80.260.910.770.540.49
100.230.880.650.600.46
40.50.290.970.940.700.55
20.220.860.780.580.40

新窗口打开| 下载CSV


AZ91镁合金和Al基复合涂层的磨损量随载荷和频率的变化,列于表5。当频率(速度)不变时,随着载荷的增大AZ91镁合金和Al基复合涂层的磨损量增大。载荷的增大使表面承受更大的剪切应力,容易产生摩擦磨损[32]。载荷不变时,频率的提高使磨损量降低。在相同的时间内频率越高摩擦产生的热量越多,更容易生成光滑薄膜而使磨损降低。表5中2 N、1 Hz工况下Al基复合涂层的磨损量与往复总行程和载荷的比值为该工况下复合涂层的磨损系数K,Al2O3含量为0%、30%、45%时K的数值列于表6。Al基复合涂层的磨损量与涂层中Al2O3的含量成线性关系[33],15% Al2O3的Al基复合涂层的磨损系数可由30%和45%得到。根据表6中的数据,可得15% Al2O3的Al基复合涂层的磨损系数为8.8751 × 10-6。冷喷涂Al基复合涂层与AZ91镁合金基体之间的机械咬合和冶金结合,使结合强度极高[23]。本文实验中施加的载荷较小,磨损沟壑深度远小于涂层厚度,因此可忽略磨损过程中Al基复合涂层和AZ91镁合金基体之间的结合强度对磨损系数的影响。

表5   AZ91镁合金及其Al基复合涂层的磨损量与载荷和频率的关系

Table 5  Wear amount of AZ91 magnesium alloy and its Al-based composite coating changes with load and frequency (mm3)

Load / N

Frequency

/ Hz

AZ91Al15% Al2O330% Al2O345% Al2O3
WearGully volumeWearGully volumeWearGully volumeWearGully volumeWear
210.03250.06990.06790.02390.02350.01920.01900.01680.0167
40.05000.10740.10430.04280.04210.03750.03710.03240.0322
80.10660.20730.20140.09380.09230.08020.07930.06970.0693
100.12180.23790.23110.11610.11420.09440.09340.08460.0841
40.50.06750.14610.14190.05330.05250.04770.04720.04320.0429
20.04200.09030.08780.03450.03400.02990.02900.02290.0228

新窗口打开| 下载CSV


表6   2 N、1 Hz工况下的磨损系数

Table 6  Friction coefficient (K) under 2 N and 1 Hz operating conditions

CoatingAl30% Al2O345% Al2O3
K / mm2·N-12.8292 × 10-57.9167 × 10-66.9583 × 10-6

新窗口打开| 下载CSV


图7给出了Al基复合涂层与AZ91镁合金基体相比耐磨性的提升率ε。纯Al涂层的耐磨性比镁合金基体的低,Al粉末之间的结合强度较低,内部结构较为疏松和多孔使其在受到剪切时容易剥落或磨损[19]。随着冷喷涂粉末中Al2O3含量的提高复合涂层的耐磨性提高,因为Al2O3使复合涂层更为致密和承载能力增大,能更好地抵抗外部的剪切应力。

图7

图7   与AZ91基体相比Al基复合涂层耐磨性提升率ε

Fig.7   Increased wear resistance of Al-based composite coatings compared to AZ91 matrix


4.3 涂层的干摩擦机理

图8给出了AZ91镁合金和Al基复合涂层在10N、1 Hz条件下磨痕的照片。从图8a可见,AZ91镁合金的磨痕表面较为光滑,出现了与滑动方向平行的犁沟。在摩擦过程中产生的热量使表面出现氧化磨损,表明磨损机制为氧化磨粒磨损[19,34]。从图8b可见,纯Al涂层反复受载发生塑性磨损,磨损表面出现典型的犁化和挤压的特征,表明纯Al涂层的磨损机制为粘着磨损[35]。从图8c~e可见,磨痕表面比纯Al涂层光滑,犁化和挤压程度随着Al2O3粉末含量的提高而降低,粘着磨损降低而磨粒磨损加强,表明Al基复合涂层的耐磨性提高[32]

图8

图8   AZ91镁合金和Al基复合涂层在磨痕的照片

(a) AZ91; (b) 0% Al2O3; (c) 15% Al2O3; (d) 30% Al2O3; (e) 45% Al2O3

Fig.8   Photos of wear scars of AZ91 magnesium alloy and Al-based composite coating at 10N and 1 Hz


4.4 磨损量的有限元分析

网格无关化验证,是创建不同尺寸的网格、比较有限元分析运行结果和运行时间进而得到网格的最佳尺寸。本文对载荷为2N、Al2O3含量为30%时的Al基复合涂层进行网格无关化验证,采用4种不同大小的网格,单元边长从0.2 mm开始以50%逐级递减,网格无关化验证的结果列于表7。可以看出,随着单元边长从0.2 mm变为0.025 mm磨损量的模拟值降低了26.72%,但是运行时间却增加了5.2倍。综合考虑计算精度和模拟计算成本,选择网格尺寸为0.05mm。

表7   网格无关化的验证

Table 7  Grid-independent verification

CategoryThickNormalThinVery thin
Grid side length / mm0.20.10.050.025
Time / h10162562
Wear / mm30.02620.02250.01950.0192

新窗口打开| 下载CSV


图9给出了载荷为2 N、频率为1 Hz条件下不同含量Al2O3粉末(0%、30%、45%)的Al基复合涂层磨损深度的有限元仿真云图。可以看出,纯Al涂层表面的磨损深度基本相同,Al2O3粉末的加入使复合涂层的磨损深度高低不同,Al2O3粉末为45%时最为明显。Al2O3粉末在涂层仿真中随机布置,在Al2O3较少的区域涂层的硬度较低,磨损深度较大;反之则磨损深度较浅,仿真磨损后Al基复合涂层的磨损深度高低不同。对图9进行后处理计算,可得Al基复合涂层的磨损仿真体积(表8)。

图9

图9   Al2O3粉末含量不同的Al基复合涂层的磨损深度有限元仿真云图

Fig.9   Finite element simulation cloud of wear depth of Al-based composite coatings with different Al2O3 powder contents(a) 0% Al2O3; (b) 30% Al2O3; (c) 45% Al2O3


表8   Al2O3含量为0%、30%、45%的Al基复合涂层的磨损量仿真值和实验数据及其差

Table 8  Simulated and experimental values of wear amount of Al-based composite coatings with Al2O3 content of 0%, 30%, and 45% and their errors

CoatingAl30% Al2O345% Al2O3
Simulated / mm30.07020.01950.0170
Experimental / mm30.06790.01900.0167
e / %3.38732.63161.7964

新窗口打开| 下载CSV


表8给出了Al2O3含量分别为0%、30%、45%的Al基复合涂层磨损量仿真值、实验值及其差。可以看出,三种不同Al2O3含量的Al基复合涂层其磨损量仿真值与实验值之间的差均小于4%,证实了Al基复合涂层有限元模型和嵌入Archard模型的UMESHMOTION子程序的准确性。

为了验证嵌入Archard模型的UMESHMOTION子程序和Al基复合涂层有限元模型的普适性,研究了Al2O3的含量为15%的Al基复合涂层的有限元模型磨损量的仿真值和实验值。图10给出了这种涂层的磨损深度仿真云图。后处理计算出的磨损量仿真值为0.0249 mm3,与表5中磨损实验值的差为5.9574%,证实了复合涂层有限元分析模型的普适性。

图10

图10   Al2O3含量为15%的Al基复合涂层的磨损深度仿真云图

Fig.10   Wear depth simulation cloud chart of 15% Al2O3 Al-based composite coating


4.5 讨论

本文得到的Al基复合涂层磨损量仿真值与实验值的一致性较好,但是仍存在一定的差。首先,Al基复合涂层的摩擦磨损受表面形貌、温度和湿度等因素的影响,并且这些因素有高度的非线性和随机性[36]。有限元仿真虽然考虑了Al2O3的沉积效率、摩擦系数、磨损系数等参数,但是无法模拟磨损过程中Al2O3粉末的脱落、表面的氧化、磨屑在磨痕表面的运动等因素,因此磨损量的有限元仿真只能近似地反映磨损过程。其次,冷喷涂Al基复合涂层中有孔隙,虽然在计算实验磨损量时扣除了孔隙率的影响,但是在往复磨损过程中在孔隙处易产生裂纹而加大磨损。ABAQUS摩擦磨损静力学分析无法研究裂纹扩展,使模拟仿真值与实验值不同。最后,Al基复合涂层磨损有限元仿真模型虽然使用了实体单元,但是使用了ALE自适应网格实现全局节点移动进而获得磨损深度的变化[37]。在每一个增量步后重新对ALE自适应网格进行平滑调整,使有限元磨损量的仿真值大于实验值。

5 结论

(1) 随着冷喷涂粉末中Al2O3含量的提高,Al基复合涂层的孔隙率降低,Al2O3粉末沉积效率线性提高,复合涂层的耐磨性提高。冷喷涂纯Al涂层的磨损机制为粘着磨损,随着Al2O3含量的提高Al基复合涂层的磨损机制由粘着磨损向磨粒磨损转变。

(2) 在载荷为2 N、频率为1 Hz条件下,不同Al2O3含量(0%、30%、45%)的Al基复合涂层其有限元磨损量仿真值与实验值的差小于4%,验证了有限元模型的正确性;15% Al2O3涂层的有限元磨损量仿真值为0.0249 mm3,与实验磨损量的差为5.9574%,表明模型具有普适性。

参考文献

Wang W, Han P, Peng P, et al.

Friction stir processing of magnesium alloys: a review

[J]. Acta Metall. Sin., 2020, 33: 43

[本文引用: 1]

Wang G G, Weiler J P.

Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications

[J]. J. Magnes. Alloy., 2023, 11(1): 78

He X L, Liang H Y, Yan Z F, et al.

Stress corrosion cracking behavior of micro-arc oxidized AZ31 alloy

[J]. Proc. Inst. Mech. Eng., 2020, 234C: 1640

Wang G Q, Wang S R, Yin Z Q, et al.

Synthesis of Ni-WC/Al-Ni functionally graded coating with advanced corrosion and wear resistance on AZ91D Mg alloy by laser cladding

[J]. Mater. Lett., 2023, 333: 133645

[本文引用: 1]

Chen X J, Xie X C, Zhang Y P, et al.

Tungsten carbide coating prepared by ultrasonic shot peening to improve the wear properties of magnesium alloys

[J]. J. Mater. Res. Technol., 2023, 26: 2451

[本文引用: 1]

Liu X H, Wang X X, Ren L Y, et al.

Improved deposition quality of calcium-phosphate coating on the surface of WE43 magnesium alloy via FCVA sputtering pretreatment

[J]. J. Mater. Res. Technol., 2023, 26: 6672

Li P Y, Liu Z T, Kang S M, et al.

Effect of plasma treatment on performance of polybutylene adipate coating on biomedical AZ31 Mg-alloy

[J]. Chin. J. Mater. Res., 2023, 37(4): 271

DOI      [本文引用: 1]

Polybutylene adipate (PBA) protective coating was prepared on fluorinated AZ31 Mg-alloy by uniform speed lifting method and then the coated Mg-alloys were subjected to plasma treatment with different power and time. The effect of plasma treatment on the surface morphology, phase composition and surface wettability of PBA protective coating were characterized by means of scanning electron microscope (SEM), X-ray photoelectron spectroscope (XPS), Fourier transform infrared spectroscope (FT-IR) and contact angle measuring instrument. The corrosion resistance of the coated Mg-alloy was characterized by potentiodynamic polarization curve measurement and electrochemical impedance spectroscope (EIS). The biological activity of the protective coatings was verified by comparing the cells adhesion on the coating surface before and after plasma treatment. Results show that plasma treatment could increase the surface roughness of PBA protective coating, increase the oxygen atom proportion, and thereby enhance the wettability of the coating surface obviously. However, plasma treatment reduced the corrosion resistance of the PBA coated Mg-alloy to a certain extent, but its corrosion current density was 2~3 orders of magnitude lower than that of the AZ31 Mg-alloy without protective coating and the fluorinated ones. In sum, the PBA protective coating can provide effective protection for Mg-alloy substrate, and the EIS curve also showed the same results. Besides, Cell adhesion on the surface of plasma treated samples increased significantly.

李鹏宇, 刘子童, 亢淑梅 .

等离子处理对医用镁合金表面聚合物防护涂层的影响

[J]. 材料研究学报, 2023, 37(4): 271

DOI      [本文引用: 1]

用匀速提拉法在氟化处理的AZ31镁合金表面制备PBA防护涂层,然后再进行等离子处理。使用扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、傅里叶红外测试(FT-IR)和接触角测量仪等手段对其表征,研究了等离子处理对PBA防护涂层表面的微观形貌、物相组成以及表面润湿性的影响;用动电位极化曲线(PD)和电化学阻抗谱(EIS)表征防护涂层处理镁合金的耐蚀性;对在等离子处理前后样品表面细胞的铺展进行比较,以验证防护涂层的生物活性。结果表明,等离子处理使PBA防护涂层表面粗糙化提高了氧原子的占比,从而显著提高了防护涂层表面的浸润性;等离子处理在一定程度上降低了防护涂层处理镁合金的耐蚀性,但是与未经防护处理的AZ31镁合金和氟化处理的镁合金相比其电流密度仍高2~3个数量级,表明防护涂层能有效防护镁合金基体;等离子处理,使样品表面黏附的细胞显著增多。

Chen C Y, Xie Y C, Yan X C, et al.

Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing

[J]. Addit. Manuf., 2019, 27: 595

[本文引用: 1]

Mouli G C, Chakradhar R P S, Srivastava M, et al.

Cold-sprayed Cu-Zn-Al2O3 coating on magnesium alloy: enhanced microhardness and corrosion behavior

[J]. J. Mater. Eng. Perform., 2023, 32(14): 6160

Xue N, Li W W, Shao L, et al.

Comparison of cold-sprayed coatings of copper-based composite deposited on AZ31B magnesium alloy and 6061 T6 aluminum alloy substrates

[J]. Materials, 2023, 16(14): 5120

[本文引用: 1]

Jenkins R, Yin S, Aldwell B, et al.

New insights into the in-process densification mechanism of cold spray Al coatings: Low deposition efficiency induced densification

[J]. J. Mater. Sci. Technol., 2019, 35(3): 427

DOI      [本文引用: 1]

This work details new insights into the in-process densification mechanism of cold spray Al coatings. The results show a trend counter to common observations: coating plastic deformation levels and coating density decreases with an increase in particle impact velocity. A lower particle impact velocity and the consequent lower deposition efficiency (DE) results in greater tamping energy per unit volume of deposit, which is the primary reason for the observed trend. This is the first time that DE has been shown to have a non-linear impact on the density of a cold spray coating, with particle in-process tamping being the primary mechanism for coating densification.

Mangalarapu T B, Kumar S, Gandham P, et al.

Cold spraying of Al-aerospace alloys: Ease of coating deposition at high stagnation temperatures

[J]. Surf. Coat. Technol., 2023, 467: 129703

Li W Y, Yang K, Yin S, et al.

Solid-state additive manufacturing and repairing by cold spraying: A review

[J]. J. Mater. Sci. Technol., 2018, 34(3): 440

DOI     

High-performance metal additive manufacturing (AM) has been extensively investigated in recent years because of its unique advantages over traditional manufacturing processes. AM has been applied to form complex components of Ti, Fe or Ni alloys. However, for other nonferrous alloys such as Al alloys, Mg alloys and Cu alloys, AM may not be appropriate because of its melting nature during processing by laser, electron beam, and/or arc. Cold spraying (CS) has been widely accepted as a promising solid-state coating technique in last decade for its mass production of high-quality metals and alloys, and/or metal matrix composites coatings. It is now recognized as a useful and powerful tool for AM, but the related research work has just started. This review summarized the literature on the state-of-the-art and problems for CS as an AM and repairing technique.

Mao X C, Duan F C, Wang F Y, et al.

Interfacial microstructure characterization and solderability of the low pressure cold sprayed Cu-Al2O3 coating on Al substrate

[J]. Surf. Coat. Technol., 2023, 452: 129093

[本文引用: 1]

Koivuluoto H, Vuoristo P.

Effect of powder type and composition on structure and mechanical properties of Cu + Al2O3 coatings prepared by using low-pressure cold spray process

[J]. J. Therm. Spray Technol., 2010, 19: 1081

[本文引用: 1]

Vaz R F, Garfias A, Albaladejo V, et al.

A review of advances in cold spray additive manufacturing

[J]. Coatings, 2023, 13(2): 267

Liu H J, Fu M K, Pang S Z, et al.

Effect of ball-milled feedstock powder on microstructure and mechanical properties of Cu-Ni-Al-Al2O3 composite coatings by cold spraying

[J]. Coatings, 2023, 13(5): 948

[本文引用: 1]

Chen J X.

Research on structure and properties of cold sprayed aluminum and micro-arc oxidation film on AZ31 magnesium alloy

[D]. Changsha: Hunan University, 2019

[本文引用: 1]

陈金雄.

AZ31镁合金冷喷涂铝及微弧氧化膜结构与性能研究

[D]. 长沙: 湖南大学, 2019

[本文引用: 1]

Qiu X, Tariq N U H, Wang J Q, et al.

Microstructure, microhardness and tribological behavior of Al2O3 reinforced A380 aluminum alloy composite coatings prepared by cold spray technique

[J]. Surf. Coat. Technol., 2018, 350: 391

[本文引用: 3]

Shockley J M, Strauss H W, Chromik R R, et al.

In situ tribometry of cold-sprayed Al-Al2O3 composite coatings

[J]. Surf. Coat. Technol., 2013, 215: 350

[本文引用: 2]

Yu M, Suo X K, Li W Y, et al.

Microstructure, mechanical property and wear performance of cold sprayed Al5056/SiCp composite coatings: effect of reinforcement content

[J]. Appl. Surf. Sci., 2014, 289: 188

[本文引用: 1]

Liu H H, Tariq N U H, Zhao F, et al.

Influence of irregular Al2O3 content on electrical conductivity, adhesion strength, and tribological properties of cold sprayed Al-Al2O3 coatings on polyether ether ketone substrate

[J]. J. Mater. Eng. Perform., 2024, 33(1): 79

[本文引用: 1]

Dayani S B, Shaha S K, Ghelichi R, et al.

The impact of AA7075 cold spray coating on the fatigue life of AZ31B cast alloy

[J]. Surf. Coat. Technol., 2018, 337: 150

[本文引用: 2]

Zhao X L, Huang C B, Yu X J, et al.

An arbitrary Lagrangian-Eulerian discontinuous Galerkin method for two-dimensional compressible flows on adaptive quadrilateral meshes

[J]. Int. J. Numer. Method. Fluids, 2023, 95(5): 796

[本文引用: 1]

Löhner R, Li L Q, Soto O A, et al.

An arbitrary Lagrangian-Eulerian method for fluid-structure interactions due to underwater explosions

[J]. Int. J. Numer. Method. Heat Fuid Flow, 2023, 33(6): 2308

[本文引用: 1]

Zhang Z J, Zhang B, Dang X H, et al.

Effect of Al2O3 particle content on microstructure and mechanical properties of 1060Al/Al-Al2O3 composites fabricated by cold spraying and accumulative roll bonding

[J]. J. Mater. Res. Technol., 2023, 26: 2941

[本文引用: 1]

Zhou H X, Li C X, Bennett C, et al.

Numerical analysis of deformation behavior and interface bonding of Ti6Al4V particle after subsequent impact during cold spraying

[J]. J. Therm. Spray Technol., 2021, 30: 1093

[本文引用: 1]

Fernandez R, Jodoin B.

Cold spray aluminum-alumina cermet coatings: effect of alumina content

[J]. J. Therm. Spray Technol., 2018, 27: 603

[本文引用: 1]

Yin X C.

Study on dry sliding friction and wear properties of ZM6 and ZK60 magnesium alloys

[D]. Yanji: Yanbian University, 2019

[本文引用: 1]

尹相春.

ZM6和ZK60镁合金干式滑动摩擦磨损性能研究

[D]. 延吉: 延边大学, 2019

[本文引用: 1]

Shi Z K, Xu L P, Deng C M, et al.

Effects of frequency on the fretting wear behavior of aluminum bronze coatings

[J]. Surf. Coat. Technol., 2023, 457: 129306

[本文引用: 1]

Zhou W T, Kong D J.

Influence of Al2O3 mass fractions on microstructure, oxidation resistance and friction-wear behaviors of CoCrAlYTaSi coatings

[J]. Surf. Coat. Technol., 2019, 379: 125058

[本文引用: 1]

Tang Y H, Ji P F, Li B, et al.

Effect of loading on microstructure and friction and wear behavior of an austenite lightweight steel

[J]. Tribol. Int., 2023, 177: 108006

[本文引用: 2]

Am R, Kaleemulla M, Doddamani S, et al.

Material characterization of SiC and Al2O3-reinforced hybrid aluminum metal matrix composites on wear behavior

[J]. Adv. Compos. Letta., 2019, 28: 1

[本文引用: 1]

Mégret A, Prince L, Olivier M G, et al.

Tribo- and tribocorrosion properties of magnesium AZ31 alloy

[J]. Coatings, 2023, 13(2): 448

[本文引用: 1]

Ye T, Jia Z Y, Ma J W, et al.

Mechanical and tribological properties of 5A06 aluminum alloy at low temperature

[J]. Surf. Topogr. Metrol. Prop., 2023, 11(1): 015011

[本文引用: 1]

Neog S P, Kumar A R, Bakshi S D, et al.

Understanding the complexities of dry sliding wear behaviour of steels

[J]. Mater. Sci. Technol., 2021, 37(5): 504

[本文引用: 1]

Yang C C, Su Y F, Liang S Y, et al.

Simulation of wire bonding process using explicit FEM with ALE remeshing technology

[J]. J. Mech., 2020, 36(1): 47

DOI      [本文引用: 1]

Thermosonic wire bonding is a common fabrication process for connecting devices in electronic packaging. However, when the free air ball (FAB) is compressed onto the I/O pad of the chip during bonding procedure, chip cracking may occur if the contact pressure is too large. This study proposes an effective simulation technique that can predict the wire ball geometry after bonding in an accurate range. The contact force obtained in the simulation can be used for possible die cracking behavior evaluation. The simulation in this study used the explicit time integration scheme to deal with the time marching problem, and the second-order precision arbitrary Lagrangian-Eulerian (ALE) algorithm was used to deal with the large deformation of the wire ball during the bonding process. In addition, the equilibrium smoothing algorithm in LS-DYNA can make the contact behavior and geometry of the bonding wire almost the same as the experiment, which can also significantly reduce the distortion of the mesh geometry after remeshing.

/