Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (2): 133-139    DOI: 10.11901/1005.3093.2021.237
  研究论文 本期目录 | 过刊浏览 |
宽温域Mn基反钙钛矿复合磁制冷材料的设计和制备
梁鹏利, 闫君(), 魏诗杰, 蒋丛稷, 陈云琳
北京交通大学理学院 微纳材料及应用研究所 北京 100044
Design and Preparation of Mn-based Antipervoskite Magnetic Refrigerant Composites with Wide Temperature Range
LIANG Pengli, YAN Jun(), WEI Shijie, JIANG Congji, CHEN Yunlin
Institute of Applied Micro-Nano Materials, School of Science, Beijing Jiaotong University, Beijing 100044, China
引用本文:

梁鹏利, 闫君, 魏诗杰, 蒋丛稷, 陈云琳. 宽温域Mn基反钙钛矿复合磁制冷材料的设计和制备[J]. 材料研究学报, 2022, 36(2): 133-139.
Pengli LIANG, Jun YAN, Shijie WEI, Congji JIANG, Yunlin CHEN. Design and Preparation of Mn-based Antipervoskite Magnetic Refrigerant Composites with Wide Temperature Range[J]. Chinese Journal of Materials Research, 2022, 36(2): 133-139.

全文: PDF(2824 KB)   HTML
摘要: 

采用固相合成法高温烧结Mn3SnC和Mn3CuN两种化合物制备出相变温区连续变化的Mn3Sn1-x Cu x C1-x N x 系列化合物,再将不同相变温区的Mn3Sn1-x Cu x C1-x N x 化合物进行物理混合制备出反钙钛矿复合磁制冷材料。这种磁制冷材料在室温附近具有“平台”状的磁熵变-温度曲线,与Mn3SnC单体材料相比其磁制冷温区由275~285 K扩展为220~300 K,磁熵变-温度曲线的半高宽从5 K增大到70 K,但是其磁熵变值大幅降低。推导了这种磁制冷材料的最大磁熵变值与磁熵变曲线半高宽和单体材料相对制冷量之间的定量关系式,解释了扩展制冷温区与提高磁熵变值之间的竞争。此定量公式不仅可用于研究反钙钛矿材料体系,对研究其它复合磁制冷材料体系也有重要的参考价值。本文首次根据单体材料的热流曲线提出了新复合磁制冷材料的计算和预测方法,可极大地简化磁制冷复合材料的设计。

关键词 复合材料磁卡效应反钙钛矿相变    
Abstract

Polycrystalline compounds of Mn3Sn1-x Cu x C1-x N x were synthesized by solid-state reaction with Mn3SnC and Mn3CuN as raw materials. The phase transition temperature of Mn3Sn1-x Cu x C1-x N x continuously changes with the variation of the Mn3SnC content. The compounds present platform-shaped magnetic entropy-temperature curves around room temperature. Compared with Mn3SnC, the magnetic cooling temperature range of the compounds changed from 275~285 K to 220~300 K, and the full width at half maximum of magnetic entropy change curve increased from 5 K to 70 K. However, the magnetic entropy of the compounds decreased significantly. The relationship among the maximum of magnetic entropy change, the half-height width of the magnetic entropy change curve for the compounds and the relative cooling power of the monomer materials was acquired. The competition between expanding the cooling temperature range and increasing the magnetic entropy change can be well understood. This quantitative formula is of significance in the field not only for the antiperovskite materials, but also for other magnetic refrigerant composites. In this work a new calculation and prediction method of magnetic refrigerant composites were proposed based on the heat flow curve of monomer material, and it could greatly simplify the design process of composite materials.

Key wordscomposite    magnetocaloric effect    antipervoskite    phase transition
收稿日期: 2021-04-15     
ZTFLH:  O469  
基金资助:国家自然科学基金(51802014);中央高校基本科研业务费专项资金(2019JBM068)
作者简介: 梁鹏利,女,1995年,硕士
图1  Mn3CuN、Mn3SnC和Mn3Sn1-x Cu x C1-x N x (x=0.125,0.111,0.100,0.091)的室温XRD谱
图2  复合样品和复合组分在(200)峰处的室温XRD谱
图3  Mn3Sn1-x Cu x C1-xN x (x=0.125,0.111,0.100,0.091)和Mn3SnC的热流曲线、熵变与温度曲线以及复合材料(实线和虚线分别表示实验测量和理论计算值)的热流曲线和熵变与温度的关系
图4  Mn3SnC、Mn3Sn1-x Cu x C1-xN x (x=0.125, 0.111, 0.100, 0.091)和复合材料在500 Oe磁场中的磁化强度与温度(M-T)关系
图5  复合材料的循环等温磁化(M-H)曲线和磁熵变与温度((-?SM )-T)的关系曲线
1 Hu Yiga , Rigun Te , Tegus O . Phase Structure,Magnetism and Magnetocaloric Effect of Gd1- x Ho x TiGe [J]. Journal of the Chinese Rare Earth Society, 2020, 38(5): 617
1 胡义嘎, 特利贡, 特古斯 . Gd1- x Ho x TiGe的物相结构和磁性及磁热效应 [J]. 中国稀土学报. 2020, 38(5): 617
2 Uporov S A , Ryltsev R E , Bykov V A , et al . Glass-forming ability, structure and magnetocaloric effect in Gd-Sc-Co-Ni-Al bulk metallic glasses [J]. Journal of Alloys and Compounds, 2021, 854: 157170
3 Zhang H , Sun Y , Niu E , et al . Enhanced mechanical properties and large magnetocaloric effects in bonded La(Fe, Si)13-based magnetic refrigeration materials [J]. Applied Physics Letters, 2014, 104(6): 062407
4 Hao J , Hu F , Wang J T , et al . Large enhancement of magnetocaloric and barocaloric effects by hydrostatic pressure in La(Fe0.92-Co0.08)11.9Si1.1 with a NaZn13-type structure [J]. Chemistry of Materials, 2020, 32(5): 1807
5 Zhang H , Hu F , Sun J , et al . Effects of interstitial H and/or C atoms on the magnetic and magnetocaloric properties of La(Fe, Si)13-based compounds [J]. Science China Physics, Mechanics and Astronomy, 2013, 56(12): 2302
6 Miao X , Wang W , Liang H , et al . Printing (Mn, Fe)2(P,Si) magnetocaloric alloys for magnetic refrigeration applications [J]. Journal of Materials Science, 2020, 55(15): 6660
7 Sun N K , Zhong D H , Ren Z X , et al . Room-temperature magnetocalor effect and magneto-resistance effect of Co0.525Fe0.475MnP compound [J]. Chin. J. Mater. Res., 2019, 33(2): 124
7 孙乃坤, 仲德晗, 任增鑫 等 . Co0.525Fe0.475MnP化合物的室温磁热效应和磁电阻效应 [J]. 材料研究学报, 2019, 33(2): 124
8 Wang B S , Tong P , Sun Y P , et al . Large magnetic entropy change near room temperature in antipervoskite SnCMn3 [J]. EPL (Europhysics Letters), 2009, 85(4): 47004
9 Yan J , Sun Y , Wu H , et al . Phase transitions and magnetocaloric effect in Mn3Cu0.89N0.96 [J]. Acta Materialia, 2014, 74: 58
10 Lin S , Wang B S , Hu X B , et al . The structural, magnetic, electrical/thermal transport properties and reversible magnetocaloric effect in Fe-based antipervoskite compound AlC1.1Fe3 [J]. Journal of Magnetism and Magnetic Materials, 2012, 324(20): 3267
11 Zhong X , Tang P , Gao B , et al . Magnetic properties and magnetocaloric effects in amorphous and crystalline Gd55Co35Ni10 ribbons [J]. Science China Physics, Mechanics and Astronomy, 2013, 56(6): 1096
12 Yu B F , Gao Q , Zhang B , et al . Review on research of room temperature magnetic refrigeration [J]. International Journal of Refrigeration, 2003, 26(6): 622
13 Li X , Xing Ru , Liu J , et al . Magnetocaloric Effect of Tb-doped Double Perovskite Oxide Pr2CoMnO6 [J]. Chin. J. Mater. Res,2020,34(1):73
13 李晓欣, 邢 茹, 刘 娇 等 . Tb掺杂双钙钛矿氧化物Pr2CoMnO6的磁热效应 [J]. 材料研究学报, 2020, 34(1): 73
14 Ohnishi T , Soejima K , Yamashita K , et al . Magnetocaloric properties of (MnFeRu)2(PSi) as magnetic refrigerants near room temperature [J]. Magnetochemistry, 2017, 3(1): 6
15 Born N O , Caron L , Seeler F , et al . Tuning nature and temperature of structural and magnetic phase transitions of Mn3Cu1- y MyN1- x C x (M=Ag, Ni) [J]. Journal of Alloys and Compounds, 2019, 793: 185
16 Tian H C , Zhong X C , Liu Z W , et al . Achieving table-like magnetocaloric effect and large refrigerant capacity around room temperature in Fe78- x Ce x Si4Nb5B12Cu1 (x=0-10) composite materials [J]. Materials Letters, 2015, 138: 64
17 Zhou L , Tang Y , Chen Y , et al . Table-like magnetocaloric effect and large refrigerant capacity of composite magnetic refrigerants based on LaFe11.6Si1.4H alloys [J]. Journal of Rare Earths, 2018, 36(6): 613
18 Yang C , Tong P , Lin J C , et al . Large magnetic entropy change associated with the weakly first-order paramagnetic to ferrimagnetic transition in antiperovskite manganese nitride CuNMn3 [J]. Journal of Applied Physics, 2014, 116(3): 033902
19 Yan J , Sun Y , Wen Y , et al . Relationship between spin ordering, entropy, and anomalous lattice variation in Mn3Sn(1-ε)SiεC(1- δ) compounds [J]. Inorg Chem, 2014, 53(4): 2317
20 Yu M H , Lewis L H , Moodenbaugh A R . Large magnetic entropy change in the metallic antiperovskite Mn3GaC [J]. Journal of Applied Physics, 2003, 93(12): 10128
21 Shao Q , Lv Q , Yang X , et al . Low-field magnetocaloric effect in antiperovskite Mn3Ga1- x Ge x C compounds [J]. Journal of Magnetism and Magnetic Materials, 2015, 396: 160
22 Wang B S , Tong P , Sun Y P , et al . Magnetism, magnetocaloric effect and positive magnetoresistance in Fe-doped antipervoskite compounds SnCMn3- x Fe x (x=0.05-0.20) [J]. Journal of Magnetism and Magnetic Materials, 2010, 322(1):163
23 Wang B S , Lu W J , Lin S , et al . Magnetic/structural diagram, chemical composition-dependent magnetocaloric effect in self-doped antipervoskite compounds Sn1- x CMn3+ x (0≤x≤0.40) [J]. Journal of Magnetism and Magnetic Materials, 2012, 324(5): 773
24 Yan J , Sun Y , Wang C , et al . Effects of Co doping on the magnetic properties, entropy change, and magnetocaloric effect in Mn3-Sn1- x Co x C1.1 compounds [J]. Acta Physica Sinica, 2014, 63(16): 167502
24 闫 君, 孙 莹, 王 聪 等 . Co掺杂对Mn3Sn1- x Co x C1.1化合物的磁性质、熵变以及磁卡效应的影响 [J]. 物理学报, 2014, 63(16): 167502
25 Born N O , Caron L , Seeler F , et al . Tunable giant magnetocaloric effect with very low hysteresis in Mn3CuN1- x C x [J]. Journal of Alloys and Compounds, 2018, 749: 926
26 Phan M H , Yu S C . Review of the magnetocaloric effect in manganite materials [J]. Journal of Magnetism and Magnetic Materials, 2007, 308(2): 325
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.
[7] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[10] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[11] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.