Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (9): 683-690    DOI: 10.11901/1005.3093.2020.044
  研究论文 本期目录 | 过刊浏览 |
透明MSe2@氮掺杂碳膜对电极用于钴电解质双面DSSC
欧金花1, 胡波年1, 王薇1, 韩瑜2,3()
1.湖南工学院材料与化学工程学院 衡阳 421002
2.大连理工大学建设工程学部 大连 116024
3.辽宁省建设科学研究院有限责任公司 沈阳 110005
Transparent MSe2@N-doped Carbon Film as a Cathode for Co(Ⅲ/Ⅱ)-mediated Bifacial Dye-sensitized Solar Cells
OU Jinhua1, HU Bonian1, WANG Wei1, HAN Yu2,3()
1. Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China
2. Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
3. Liaoning Province Building Science Research Institute Co. Ltd., Shenyang 110005, China
引用本文:

欧金花, 胡波年, 王薇, 韩瑜. 透明MSe2@氮掺杂碳膜对电极用于钴电解质双面DSSC[J]. 材料研究学报, 2020, 34(9): 683-690.
Jinhua OU, Bonian HU, Wei WANG, Yu HAN. Transparent MSe2@N-doped Carbon Film as a Cathode for Co(Ⅲ/Ⅱ)-mediated Bifacial Dye-sensitized Solar Cells[J]. Chinese Journal of Materials Research, 2020, 34(9): 683-690.

全文: PDF(8931 KB)   HTML
摘要: 

用层层自组装法制备一种M-TCPP(M=Ni、Fe)薄膜,然后原位硒化制备出MSe2和氮掺杂碳的复合透明膜(MSe2@NCF),将其用作对电极并结合钴电解质的特点制备了双面DSSC。对MSe2@NCF的形貌、结构和电化学性能进行表征,并探讨了从正面和背面辐射DSSC时电池的电荷传输路线和光伏性能的区别。结果表明,NiSe2@NCF具有可与Pt相媲美的催化活性,用其组装的双面DSSC从正面辐射和背面辐射其PCE分别为8.19%和6.02%,与用Pt电极组装DSSC的PCE(8.46%和6.23%)接近。

关键词 复合材料染料敏化太阳能电池层层自组装对电极NiSe2FeSe2    
Abstract

Transparent MSe2@N-doped carbon film was synthesized using a metal metalloporphyrin (M-TCPP, M=Ni,Fe) thin film as a template in the presence of selenium powder in nitrogen atmosphere, and the MSe2@N-doped carbon film was used as the counter electrode (CE) in Co-mediated bifacial dye-sensitized solar cells (DSSCs). The morphology, structure and electrochemical performance of MSe2@NCF were characterized, while the difference of charge transfer process and photovoltaic performance of the cells was discussed when irradiated at the front and rear of the DSSC. The NiSe2@N-doped carbon film achieves admirable PCEs of 8.19% and 6.02% when irradiated at the front and rear of the device, respectively, which is comparable performance to that of a cell with a Pt CE (PCEs of 8.46% and 6.23%).

Key wordscomposite    dye-sensitized dolar cells    layer-by-layer self-assembly method    counter electrode    NiSe2    FeSe2
收稿日期: 2020-02-13     
ZTFLH:  TK513.5  
基金资助:国家自然科学基金(51974115);湖南省教育厅项目(19B143)
作者简介: 欧金花,女,1987年生,博士
图1  MSe2@NCF的XRD谱
图2  FTO、NiSe2@NCF、FeSe2@NCF的SEM照片和NiSe2@NCF、FeSe2@NCF的TEM照片
图3  NiSe2@NCF 和FeSe2@NCF的 XPS谱
图4  MSe2@NCF的J-V曲线
CEIrradiationVOC/VJSC/mA·cm-2FF/%PCE/%
PtFront0.8713.9269.978.46
Rear0.8510.3071.086.23
NiSe2@NCFFront0.8813.4668.568.19
Rear0.869.7371.726.02
FeSe2@NCFFront0.8812.7566.437.47
Rear0.859.1369.865.44
表1  MSe2@NCF对电极DSSC的光伏参数
图5  用不同对电极组装的对称电池的交流阻抗谱
CERs/Ω·cm2Rct /Ω·cm2ZN /Ω·cm2
Pt17.863.853.14
NiSe2@NCF17.534.813.37
FeSe2@NCF17.955.543.48
表2  不同对电极的EIS参数
图6  用不同对电极组装的对称电池的塔菲尔极化曲线
[1] Ahmad M S, Pandey A K, Rahim N A. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review [J]. Renew. Sust. Energ. Rev., 2017, 77: 89
[2] Sugathan V, John E, Sudhakar K. Recent improvements in dye sensitized solar cells: A review [J]. Renew. Sust. Energ. Rev., 2015, 52: 54
[3] Chen M, Shao L L. Review on the recent progress of carbon counter electrodes for dye-sensitized solar cells [J]. Chem. Eng. J., 2016, 304: 629
[4] Meyer E, Bede A, Zingwe N, et al. Metal sulphides and their carbon supported composites as Platinum-free counter electrodes in dye-sensitized solar cells: a review [J]. Materials, 2019, 12: 1980
[5] Ponken T, Tagsin K, Suwannakhun C, et al. Preparation of platinum (Pt) Counter electrode coated by electrochemical technique at high temperature for dye-sensitized solar cell (DSSC) application [J]. J. Phys., 2017, 901: 012084
[6] Ou J H, Xiang J, Liu J X, et al. Surface-supported metal-organic framework thin-film-derived transparent CoS1.097@ N-doped carbon film as an efficient counter electrode for bifacial dye-sensitized solar cells [J]. ACS Appl. Mater. Interfaces, 2019, 11: 14862
[7] Duan Y Y, Tang Q W, He B L, et al. Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency [J]. Nanoscale, 2014, 6: 12601
doi: 10.1039/c4nr03900a pmid: 25185939
[8] Ito S, Zakeeruddin S M, Comte P, et al. Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte [J]. Nat. Photon., 2008, 2: 693
[9] Bisquert J. Photovoltaics: the two sides of solar energy [J]. Nat. Photon., 2008, 2: 648
[10] Fu Y P, Lv Z B, Hou S C, et al. TCO‐free, flexible, and bifacial dye‐sensitized solar cell based on low‐cost metal wires [J]. Adv. Energy Mater., 2012, 2: 37
[11] Duan Y Y, Tang Q W, He B L, et al. Bifacial dye-sensitized solar cells with transparent cobalt selenide alloy counter electrodes [J]. J. Power Sour., 2015, 284: 349
[12] Ou J H, Liang J, Xiang J, et al. Highly transparent nickel and iron sulfide on nitrogen-doped carbon films as counter electrodes for bifacial quantum dot sensitized solar cells [J]. Sol. Energy, 2019, 193: 766
[13] Wu J H, Li Y, Tang Q W, et al. Bifacial dye-sensitized solar cells: A strategy to enhance overall efficiency based on transparent polyaniline electrode [J]. Sci. Rep., 2014, 4: 4028
doi: 10.1038/srep04028 pmid: 24504117
[14] Xu S J, Luo Y F, Liu G W, et al. Bifacial dye-sensitized solar cells using highly transparent PEDOT: PSS films as counter electrodes [J]. Electrochim. Acta, 2015, 156: 20
[15] Kim C K, Ji J M, Zhou H R, et al. Tellurium-doped, mesoporous carbon nanomaterials as transparent metal-free counter electrodes for high-performance bifacial dye-sensitized solar cells [J]. Nanomaterials, 2020, 10: 29
[16] Yun S N, Liu Y F, Zhang T H, et al. Recent advances in alternative counter electrode materials for Co-mediated dye-sensitized solar cells [J]. Nanoscale, 2015, 7: 11877
pmid: 26132719
[17] Kavan L, Yum J H, Graetzel M. Optically transparent cathode for Co(III/II) mediated dye-sensitized solar cells based on graphene oxide [J]. ACS Appl. Mater. Interfaces, 2012, 4: 6999
doi: 10.1021/am302253e pmid: 23182034
[18] Gao C J, Han Q J, Wu M X. Review on transition metal compounds based counter electrode for dye-sensitized solar cells [J]. J. Energy Chem., 2018, 27: 703
[19] Ou J H, Gong C H, Wang M, et al. Highly efficient ZIF-8/graphene oxide derived N-doped carbon sheets as counter electrode for dye-sensitized solar cells [J]. Electrochim. Acta, 2018, 286: 212
[20] Gong F, Wang H, Xu X, et al. In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells [J]. J. Am. Chem. Soc., 2012, 134: 10953
doi: 10.1021/ja303034w pmid: 22713119
[21] Hezam A, Namratha K, Drmosh Q A, et al. Electronically semitransparent ZnO nanorods with superior electron transport ability for DSSCs and solar photocatalysis [J]. Ceram. Int., 2018, 44: 7202
[22] Han C L, Wang J, Gong Y T, et al. Nitrogen-doped hollow carbon hemispheres as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline medium [J]. J. Mater. Chem., 2014, 2A: 605
[23] Ma X, Zhang L, Xu G C, et al. Facile synthesis of NiS hierarchical hollow cubes via Ni formate frameworks for high performance supercapacitors [J]. Chem. Eng. J., 2017, 320: 22
[24] Du Y S, Cheng G Z, Luo W. NiSe2/FeSe2 nanodendrites: a highly efficient electrocatalyst for oxygen evolution reaction [J]. Catal. Sci. Technol., 2017, 7: 4604
[25] Xu H J, Wang B K, Shan C F, et al. Ce-doped NiFe-layered double hydroxide ultrathin nanosheets/nanocarbon hierarchical nanocomposite as an efficient oxygen evolution catalyst [J]. ACS Appl. Mater. Interfaces, 2018, 10: 6336
doi: 10.1021/acsami.7b17939 pmid: 29384365
[26] Chen T, Li S Z, Wen J, et al. Rational construction of hollow core‐branch CoSe2 nanoarrays for high‐performance asymmetric supercapacitor and efficient oxygen evolution [J]. Small, 2018, 14: 1700979
doi: 10.1002/smll.v14.5
[27] Liu T T, Asiri A M, Sun X P. Electrodeposited Co-doped NiSe2 nanoparticles film: a good electrocatalyst for efficient water splitting [J]. Nanoscale, 2016, 8: 3911
doi: 10.1039/c5nr07170d pmid: 26866797
[28] Li D J, Maiti U N, Lim J, et al. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction [J]. Nano Lett., 2014, 14: 1228
doi: 10.1021/nl404108a pmid: 24502837
[29] Gong J W, Sumathy K, Qiao Q Q, et al. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends [J]. Renew. Sust. Energ. Rev., 2017, 68: 234
[30] Gunasekera S S B, Perera I R, Gunathilaka S S. Conducting polymers as cost effective counter electrode material in dye-sensitized solar cells [A]. Solar Energy [C]. Singapore: Springe, 2020: 345
[31] Silambarasan K, Archana J, Athithya S, et al. Hierarchical NiO@NiS@ graphene nanocomposite as a sustainable counter electrode for Pt free dye-sensitized solar cell [J]. Appl. Surf. Sci., 2020, 501: 144010
[32] Ou J H, Gong C H, Xiang J, et al. Noble metal-free Co@N-doped carbon nanotubes as efficient counter electrode in dye-sensitized solar cells [J]. Sol. Energy, 2018, 174: 225
[33] Makhlouf M M, Abdulkarim S, Adam M S S, et al. Unraveling urea pre-treatment correlated to activate Er2(WO4)3 as an efficient and stable counter electrode for dye-sensitized solar cells [J]. Electrochim. Acta, 2020, 333: 135540
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.