Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (1): 64-72    DOI: 10.11901/1005.3093.2019.359
  研究论文 本期目录 | 过刊浏览 |
嵌入式共固化高阻尼电磁吸波复合材料
陈新乐,梁森(),闫盛宇,郑长升,王玲
青岛理工大学机械与汽车工程学院 青岛 266520
Embedded Co-cured High Damping and Electromagnetic Absorbing Composite
CHEN Xinle,LIANG Sen(),YAN Shengyu,ZHENG Changsheng,WANG Ling
School of Mechanical and Automotive Engineering, Qingdao Technological University, Qingdao 266520, China
引用本文:

陈新乐,梁森,闫盛宇,郑长升,王玲. 嵌入式共固化高阻尼电磁吸波复合材料[J]. 材料研究学报, 2020, 34(1): 64-72.
Xinle CHEN, Sen LIANG, Shengyu YAN, Changsheng ZHENG, Ling WANG. Embedded Co-cured High Damping and Electromagnetic Absorbing Composite[J]. Chinese Journal of Materials Research, 2020, 34(1): 64-72.

全文: PDF(4229 KB)   HTML
摘要: 

提出多层吸波预浸料层和吸波阻尼层相互嵌合的结构,研发了一种兼具优良电磁吸波性能、高阻尼性能以及其他优良静力学和动力学性能的嵌入式共固化高阻尼电磁吸波复合材料,探索其制备工艺,推导了这种结构的电磁反射损失的理论表达式,并根据理论计算表达式编写Matlab程序理论分析了该结构的吸波性能。电磁吸波的实验结果,验证了该分析结果的有效性。模态实验、自由衰减实验和层间剪切实验结果给出了模态参数、阻尼性能以及层间剪切性能与阻尼层电磁吸波材料含量的关系。结果表明:随着试件电磁吸波材料含量的提高试件的反射损失变小,电磁吸收频宽增大,模态固有频率降低,模态阻尼比增加,阻尼损耗因子增加,层间剪切应力增强。

关键词 复合材料吸波性能模态参数阻尼损耗因子层间剪切应力    
Abstract

A multi-layered electromagnetic absorbing composite was proposed to have the structure composed alternately of absorbing prepreg layer and absorbing damping layer, thus the embedded co-curing composite with excellent electromagnetic absorbing property and high damping property as well as other excellent static and dynamic properties was developed. The theoretical expression of the electromagnetic reflection loss of the structure was deduced, and the absorbing performance of the structure was theoretically analyzed by using MATLAB program based on the theoretical expression. The electromagnetic absorbing test verified the validity of the theoretical results. Modal test, free decay test and interlinear shear test obtained the variation curve of modal parameters, damping performance and interlamellar shear performance with the content of electromagnetic absorbing material. The experimental data show that with the increase of the content of electromagnetic absorbing materials in the composite, of which the reflection loss and the modal natural frequency decrease, the electromagnetic absorption bandwidth, the modal damping ratio and the damping loss factor increase, whereas, the interlamellar shear stress enhances.

Key wordscomposite    absorbing properties    modal parameters    damping loss factor    interlamellar shear
收稿日期: 2019-07-18     
ZTFLH:  V258  
基金资助:国家自然科学基金(51375248);山东省自然科学基金(ZR2019MEE088)
作者简介: 陈新乐,男,1994年生,硕士生
图1  阻尼吸波复合材料的结构
LayerEpoxy resinE glass fiberDamping materialFe3O4La2O3
14545000
2001500
34545000
4001500
54545000
6001500
74545000
8001500
94545000
10001500
114545000
表1  试件1的材料组分
LayerEpoxy resinE glass fiberDamping materialFe3O4La2O3
14545050
2001561.2
34545060
4001571.4
54545070
6001581.6
74545080
8001591.8
94545090
100015102
1145450100
表2  试件2的材料组分
LayerEpoxy resinE glass fiberDamping materialFe3O4La2O3
14545060
2001571.4
34545070
4001581.6
54545080
6001591.8
74545090
80015102
945450100
100015112.2
1145450110
表3  试件3的材料组分
LayerEpoxy resinE glass fiberDamping materialFe3O4La2O3
14545070
2001581.6
`34545080
4001591.8
54545090
60015102
745450100
80015112.2
945450110
100015122.4
1145450120
表4  试件4的材料组分
LayerEpoxy resinE glass fiberDamping materialFe3O4La2O3
14545080
2001591.8
34545090
40015102
545450100
60015112.2
745450110
80015122.4
945450120
100015132.6
1145450130
表5  试件5的材料组分
LayerEpoxy resinE glass fiberDamping materialFe3O4La2O3
14545090
20015102
345450100
40015112.2
545450110
60015122.4
745450120
80015132.6
945450130
100015142.8
1145450140
表6  试件6的材料组分
IngredientMass ratio
HNBR4367100
N22040
ZnO5
SA1
N4451.5
TMTD0.8
S5.5
CZ0.5
101030
表7  黏弹性阻尼材料组分
图2  共固化工艺曲线
图3  嵌入式共固化阻尼电磁吸波复合材料板
图4  吸波性能测试系统
图5  模态测试系统
图6  剪切试件的尺寸和测试系统
图7  反射损失理论曲线
图8  反射损失试验曲线
SpecimenFirst modalSecond modalThird modal

Modal

frequency

/Hz

Modal

Damping ratio/%

Modal

frequency

/Hz

Modal

damping ratio /%

Modal

frequency

/Hz

Modal

damping ratio /%

163.934.12680.652.982289.491.382
257.255.22873.623.757251.382.234
355.285.44171.323.925242.262.356
453.655.60369.324.177234.212.603
552.395.75167.464.211227.062.751
651.205.87265.864.309220.692.869
表8  模态测试结果
图9  模态参数的变化关系
Specimen123456
1#/%6.3668.3137.9348.3389.9449.928
2#/%6.4137.5028.7339.1678.9629.038
3#/%7.1887.8278.2689.2359.3319.634
4#/%7.2818.4868.8938.6928.3278.628
Average value/%6.8128.0328.4578.8589.1419.307
Discrete coefficient0.0620.0490.0450.0410.0640.054
表9  不同试件的阻尼损耗因子
图10  阻尼损耗因子的变化
Specimen123456
1#/%300628653461377538354163
2#/%275031263152380639214207
3#/%301528973369354941824352
4#/%263832333485382739164143
5#/%284131343268361341514405
Average value/N285030513347371440014254
Discrete coefficient0.0510.0470.0370.0300.0350.025
表10  不同试件的层间剪切力
图11  剪切力变化曲线
图12  层间剪切应力变化曲线
图13  吸波阻尼层截面的微观SEM照片
[1] Liang S, Liang L, Mi P. New development of damping structure of embedded co cured composites [J]. Journal of Applied Mechanics, 2005, 27(4): 767
[1] (梁森, 梁磊, 米鹏. 嵌入式共固化复合材料阻尼结 构的新进展 [J]. 应用力学学报, 2005, 27(4): 767)
[2] Gibson R F. A review of recent research on mechanics of multifunctional composite materials and structures [J]. Composite Structures, 2010, 92(12): 27
[3] Agnese F, Scarpa F. Macro-composites with star-shaped inclusions for vibration damping in wind turbine blades [J]. Composite Structures, 2014, 108(1): 978
[4] Zheng C S, Liang S. Low-temperature co-cured High Damping Composites [J]. Acta Aeronautical et Astronautic Sonica, 2019, 15(8): 38
[4] (郑长升, 梁 森. 低温共固化高阻尼复合材料 [J]. 航空学报,2019, 15(8): 38)
[5] Pan L J, Zhang B M. Damping and mechanical properties of co-cured composite laminates with embedded per-forate viscoelastic layer [J]. Journal of Materials science and Technology, 2009, 25(4): 543
[6] Ni N N, Wen Y F, He D L, et al. High damping and high stiffness CFRP composites with aramid non-woven fabric interlayers [J]. Composites Science & Technology, 2015, 117: 92
[7] Pan L J. Study of performance and optimum design of cocured composite laminates with embedded viscoelastic layer [D]. Harbin: Harbin Institute of Technology, 2009
[7] (潘利剑. 粘弹阻尼层共固化复合材料的性能研究与优化设计 [D]. 哈尔滨: 哈尔滨工业大学, 2009)
[9] Biggerstaff J M, Kosmatka J B. Damping performance of co-cured graphite/epoxy composite laminates with embedded damping materials [J]. Journal of Compo-sites Materials, 1999, 33(15): 57
[10] Zhang M. Analysis of absorbing characteristics of isotropic resin matrix composites [D]. Harbin: Harbin Engineering University, 2011
[10] (张 鸣. 各向同性树脂基多层复合材料吸波特性分析 [D]. 哈尔滨: 哈尔滨工程大学, 2011)
[11] Xiong B. Calculation and experimental study on reflectance of multilayer composite absorbing materials containing FSS structure [D]. Wuhan: Huazhong University of Science and Technology, 2013
[11] (熊 波. 含FSS结构的多层复合吸波材料反射率计算与实验研究 [D]. 武汉: 华中科技大学, 2013)
[12] Wang Z Q. Study on microwave absorbing properties of grapheme loaded rare earth oxide and its rubber composites [D]. Taiyuan: North University of China, 2018
[12] (王中奇. 石墨烯负载稀土氧化物及其橡胶复合材料吸波性能的研究 [D]. 太原: 中北大学, 2018)
[13] Wan D. Design and preparation of multilayer composite broadband absorbing structure [D]. Wuhan: Huazhong University of Science and Technology, 2015
[13] (万 东. 多层复合宽带吸波结构的设计与制备 [D]. 武汉: 华中科技大学, 2015)
[14] Zhao H T, Ma R T. Nano-nickel Ferrite Composite Absorbing Material [M]. Beijing: Chemical Industry Press, 2013
[14] (赵海涛, 马瑞廷. 纳米镍铁氧体复合吸波材料 [M]. 北京: 化学工业出版社, 2015)
[15] Suzuki K, Kageyama K, Kimpara I, et a1.Vibration and damping prediction of laminates with constrained viscoelastic layers--numerical analysis by a multilayer higher-order-deformable finite element and experimental observations [J]. Mechanics of Advanced Materials and Structures,2003, 10(3): 43
[16] Zhang S H, Chen H L. A study on the damping characteristics of laminated composites with integral viscoelastic layers [J]. Composite Structures, 2006, 74(1): 63
[17] Liang S, Liang K Y, Luo L. Study on low-velocity impact of embedded and co-cured composite damping panels with numerical simulation method [J]. Composite Structures, 2014, 107(1): 1
[18] Liang S, Zhang Z S, Mi P. Sound insulation characteristics of the embedded and co-cured composite damping structures [J]. Advanced Materials Research, 2012, 487: 598
[19] Lin G X, Ding L, Zhang M X. Study on co-cure processing and performance for carbon fiber-composite constrained damping structure [J]. Development and Application of Materials, 2017, 32 (6): 110
[19] (林国兴, 丁 亮, 张明霞. 碳纤复合约束阻尼结构共固化成型及其性能研究 [J]. 材料开发与应用, 2017, 32(6): 110)
[20] Jiang X. Study on mechanical properties and damping properties of nitrile rubber filled with different fillers [J]. Chinese Journal of Colloid and Polymer, 2014, 32(2): 58
[20] (江学良. 不同填料填充丁腈橡胶力学性能和阻尼性能的研究 [J]. 胶体与聚合物, 2014, 32(2): 58)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.