Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (11): 865-873    DOI: 10.11901/1005.3093.2019.218
  研究论文 本期目录 | 过刊浏览 |
Al2O3填料对SiCf/BN/SiC复合材料弯曲强度和高温吸波性能的影响
穆阳(),李皓
中国飞行试验研究院航电所 西安 710089
Effects of Micron Al2O3 Filler on Flexural Strength and High-temperature Microwave Absorbing Properties of SiCf/BN/SiC Composites
MU Yang(),LI Hao
Department of Avionics, Chinese Flight Test Establishment, Xi’an 710089, China
引用本文:

穆阳,李皓. Al2O3填料对SiCf/BN/SiC复合材料弯曲强度和高温吸波性能的影响[J]. 材料研究学报, 2019, 33(11): 865-873.
Yang MU, Hao LI. Effects of Micron Al2O3 Filler on Flexural Strength and High-temperature Microwave Absorbing Properties of SiCf/BN/SiC Composites[J]. Chinese Journal of Materials Research, 2019, 33(11): 865-873.

全文: PDF(9289 KB)   HTML
摘要: 

用有机先驱体浸渍裂解(PIP)法制备SiCf/BN/SiC复合材料,研究了微米Al2O3粉体对其弯曲强度、高温介电和高温吸波性能的影响。结果表明,随着Al2O3的含量从5%提高到20%,SiCf/BN/SiC的弯曲强度呈现出先升高后降低的趋势,最大值达到295 MPa;随着温度的升高复合材料复介电常数的实部和虚部均逐渐增大,加入Al2O3填料能降低高温复介电常数及其随温度增大的幅度。无填料复合材料的室温和高温吸波性能均较差,而添加20% Al2O3的复合材料在8.2~12.4 GHz频段的室温反射损耗均低于-8 dB,且适用厚度为3.0~3.5 mm,700℃时厚度为3.0 mm的反射损耗为-5~-8 dB,在实际工程应用中具有较强的可设计性。

关键词 复合材料SiCf/BN/SiCPIP法Al2O3填料弯曲强度高温吸波    
Abstract

Composites of SiCf/BN/SiC with micron Al2O3 filler were fabricated via precursor infiltration and pyrolysis method (PIP), and then their flexural strength, high-temperature dielectric and microwave absorbing properties were investigated. Results show that as the filler content increases from 5% to 20% the flexural strength of SiCf/BN/SiC composites increases firstly and then degrades, and the maximum strength can reach 295 MPa. The real part and imaginary part of the complex permittivity of the composites increase with the rising temperature. Due to the introduction of Al2O3 filler the values and increasing range of the high-temperature complex permittivity can be significantly decreased with the rising temperature. The composites without filler show poor room- and high-temperature reflection loss (RL), however when the composite possesses 20% Al2O3 filler, the room-temperature RL values can be decreased to below -8 dB in the whole X band and its applicable thickness can expand to 3.0~3.5 mm. The RL values can reach -5~-8 dB at 700℃ for the composite with 20% Al2O3 filler of 3.0mm in thickness. The introduction of Al2O3 filler enhances the design margin for the practical application.

Key wordscomposite    SiCf/BN/SiC    PIP method    Al2O3 filler    flexural strength    high-temperature microwave absorbing
收稿日期: 2019-04-27     
ZTFLH:  TB34  
基金资助:国家自然科学基金(51502236)
作者简介: 穆 阳,男,1989年生,博士
图1  高温复介电性能测试装置的示意图
Al2O3 filler contentPorosity/%Density/g·cm-3Flexural strength/MPaFailure displacement/mm
(a) 013.62.10238±60.32±0.03
(b) 5%13.62.33250±50.40±0.03
(c) 10%13.72.36295±60.45±0.03
(d) 15%14.12.34220±90.34±0.03
(e) 20%14.42.36187±80.27±0.03
表1  不同Al2O3含量SiCf/BN/SiC复合材料的性能
图2  不同Al2O3含量SiCf/BN/SiC复合材料的应力-位移曲线
图3  不同Al2O3含量的SiCf/BN/SiC复合材料的断面SEM照片
图4  不同Al2O3含量的复合材料SiC基体的SEM照片
图5  Al2O3填料对SiCf/BN/SiC复合材料复介电常数的影响
图6  厚度为3.0 mm的SiCf/BN/SiC复合材料在X频段的反射损耗随Al2O3含量的变化和不同Al2O3含量SiCf/BN/SiC复合材料的反射损耗随厚度的变化
图7  Al2O3含量为10%的SiCf/BN/SiC复合材料复介电常数在不同温度下的变化
图8  Al2O3含量为20%的SiCf/BN/SiC复合材料复介电常数在不同温度下的变化
图9  厚度为3.0 mm的SiCf/BN/SiC复合材料其反射损耗在不同温度下的变化
[1] Liu Y, Luo F, Zhou W C, et al. Dielectric and microwave absorption properties of Ti3SiC2 powders [J]. J. Alloys Compd., 2013, 576: 43
[2] Liu H T. Design, preparations and properties of the SiCf/SiC radar absorbing materials with sandwich structures [D]. Changsha: National University of Defense Technology, 2010
[2] (刘海韬. 夹层结构SiCf/SiC雷达吸波材料设计、制备及性能研究 [D]. 长沙: 国防科学技术大学, 2010)
[3] Liu H T, Tian H. Mechanical and microwave dielectric properties of SiCf/SiC composites with BN interphase prepared by dip-coating process [J]. J. Eur. Ceram. Soc., 2012, 32: 2505
[4] Liu H T, Tian H, Cheng H F. Dielectric properties of SiC fiber-reinforced SiC matrix composites in the temperature range from 25 to 700℃ at frequencies between 8.2 and 18 GHz [J]. J. Nucl. Mater., 2013, 432: 57
[5] Li Q. Electromagnetic absorbing properties and its optimization of PDCs-SiC(N) ceramics and composites [D]. Xi’an: Northwestern Polytechnical University, 2015
[5] (李 权. PDCs-SiC(N)陶瓷及其复合材料的电磁吸波特性及优化 [D]. 西安: 西北工业大学, 2015)
[6] Ding D H, Shi Y M, Wu Z H, et al. Electromagnetic interference shielding and dielectric properties of SiCf/SiC composites containing pyrolytic carbon interphase [J]. Carbon, 2013, 60: 552
[7] Cao M S, Song W L, Hou Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J]. Carbon, 2010, 48: 788
[8] Mu Y, Li H, Liu Y Q, et al. Effects of low-temperature pre-oxidization on dielectric properties of PIP-SiCf/SiC composites [J]. Mater. Rep., 2017, 30(S2): 129
[8] (穆 阳, 李 皓, 刘宇清等. 低温预氧化对PIP-SiCf/SiC复合材料介电性能的影响 [J]. 材料导报, 2017, 30(S2): 129)
[9] Ding D H, Luo F, Shi Y M, et al. Influence of thermal oxidation on complex permittivity and microwave absorbing potential of KD-I SiC fiber fabrics [J]. J. Eng. Fiber. Fabr., 2014, 9(2): 99
[10] Wan F, Luo F, Wang H Y, et al. Effects of carbon black (CB) and alumina oxide on the electromagnetic- and microwave-absorption properties of SiC fiber/aluminum phosphate matrix composites [J]. Ceram. Int., 2014, 40: 15849
[11] Yuan J, Yang H J, Hou Z L, et al. Ni-decorated SiC powders: Enhanced high-temperature dielectric properties and microwave absorption performance [J]. Powder Technol., 2013, 237: 309
[12] Zhou Y, Zhou W C, Luo F, et al. Effects of dip-coated BN interphase on mechanical properties of SiCf/SiC composites prepared by CVI process [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1400
[13] Liu T. Study on microwave equivalent parameters of electromagnetic wave absorption composite [D]. Chengdu: University of Electronic Science and Technology of China, 2010
[13] (刘 涛. 电磁波吸收复合物微波等效参数研究 [D]. 成都: 电子科技大学, 2010)
[14] Dou Y K, Li J B, Fang X Y, et al. The enhanced polarization relaxation and excellent high-temperature dielectric properties of N-doped SiC [J]. Appl. Phys. Lett., 2014, 104: 052102
[15] Song H H, Zhou W C, Luo F, et al. Temperature dependence of dielectric properties of SiCf/PyC/SiC composites [J]. Mater. Sci. Eng., 2015, 195B: 12
[16] Wang H Y, Zhu D M, Wang X F, et al. Influence of silicon carbide fiber (SiCf) type on the electromagnetic microwave absorbing properties of SiCf/epoxy composites [J]. Composites, 2017, 93A: 10
[17] Mu Y, Li H, Deng J X, et al. Temperature-dependent electromagnetic shielding properties of SiCf/BN/SiC composites fabricated by chemical vapor infiltration process [J]. J. Alloys Compd., 2017, 724C: 633
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.