Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (9): 666-672    DOI: 10.11901/1005.3093.2019.060
  研究论文 本期目录 | 过刊浏览 |
表面活性剂PEG6000对二元络合体系化学沉积铜的影响
卢建红1,2,邓小梅3,阎建辉3,涂继国1,王明涌1(),焦树强1()
1. 北京科技大学 钢铁冶金新技术国家重点实验室 北京 100083
2. 北京化工大学 常州先进材料研究院 常州 213164
3. 湖南理工学院化学化工学院 岳阳 414006
Effect of PEG6000 on Electroless Copper in Dual-Ligands System
LU Jianhong1,2,DENG Xiaomei3,YAN Jianhui3,TU Jiguo1,WANG Mingyong1(),JIAO Shuqiang1()
1. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
2. Changzhou Institutes of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164, China
3. School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
引用本文:

卢建红, 邓小梅, 阎建辉, 涂继国, 王明涌, 焦树强. 表面活性剂PEG6000对二元络合体系化学沉积铜的影响[J]. 材料研究学报, 2019, 33(9): 666-672.
LU Jianhong, DENG Xiaomei, YAN Jianhui, TU Jiguo, WANG Mingyong, JIAO Shuqiang. Effect of PEG6000 on Electroless Copper in Dual-Ligands System[J]. Chinese Journal of Materials Research, 2019, 33(9): 666-672.

全文: PDF(4493 KB)   HTML
摘要: 

研究了表面活性剂聚乙二醇6000对乙二胺四乙酸(EDTA)/四羟丙基乙二胺(THPED)二元络合体系化学镀铜的过程和化学镀铜表面结构的影响。混合电位-时间测试结果表明,化学沉积过程分为三个区:诱发区、过渡区和稳定区。PEG6000使体系的混合电位负移趋势放缓,与表面活性剂在铜表面的吸附阻滞了对带电荷离子的吸附有关。线性扫描测试结果表明,阴极还原反应为控制步骤,PEG6000的吸附减缓了阴极还原反应,还原峰电流密度下降了约40%;铜化学沉积速率随着PEG6000浓度的提高呈线性下降趋势。SEM、EDS和XRD表征结果表明,化学镀铜的纯度较高,加入PEG6000使镀层呈现出明显的(220)晶面择优取向,且晶粒尺寸由77.7 nm减小到50.0 nm,有细化晶粒的作用。

关键词 材料表面与界面化学镀铜表面活性剂聚乙二醇6000混合电位晶面择优取向    
Abstract

The effect of surfactant polyethylene glycol (PEG) 6000 on the electroless copper plating process in a bath of dual-ligands ethylenediamine tetraacetic acid (EDTA)/tetrahydroxypropyl ethylenediamine (THPED) was investigated by electrochemical method. Mixed potential-time curves indicate that the overall process can be divided into three districts: induction, transitional and stable region. PEG6000 can slowdown the negative shifting of electrode potential, which related to the retardation of the adsorption of charged ions resulted from the surfactant adsorption on the copper electrode. Linear sweep voltammetry measurements show that cathodic reduction reaction is the controlling step for the plating process; PEG6000 could retard cathodic polarization, therewith, the peak value of cathodic reduction current decreased about 40%, so PEG6000 linearly reduced deposit speed. The copper layers prepared from the bath with PEG6000 are product of high-purity with a surface morphology of uniformly distributed fine particles, moreover, the addition of PEG6000 favored the formation of copper layer with (220) preferred orientation with refined grains of average size 50.0 nm, in comparison with 77.7 nm that from the bath without PEG6000 addition.

Key wordssurface and interface in the materials    electroless copper    surfactant    polyethylene glycol 6000    mixed potential    preferred orientation
收稿日期: 2019-01-14     
ZTFLH:  TQ153  
基金资助:常州市科技计划(CJ20180014)
作者简介: 卢建红,男,1972年生,研究员
PEG 6000/mg·L-1 Other items
20 CuSO4?5H2O: 0.05 mol/L
25 EDTA: 0.03 mol/L
30 THPED: 0.025 mol/L
35 NaOH: 0.2 mol/L
40

Formalin: 0.1 mol/L

2,2’-dipyridyl: 8 mol/L

表1  化学镀铜溶液的组成
图1  PEG6000浓度不同时铜电极表面的混合电位-时间曲线
PEG6000/mg·L-1 0 20 25 30 35 40
Fall-off value of E mix ΔU/V 0.095 0.082 0.071 0.064 0.059 0.043
表2  不同PEG6000浓度的混合电位负移值
图2  PEG6000浓度对Cu(II)离子阴极还原的影响
Concentration of PEG6000/mg·L-1 0 20 25 30 35 40
Reduction current density/μA·cm-2 131 120 112 105 96 78
表3  不同PEG6000添加剂浓度的阴极还原峰值
图3  PEG6000浓度对甲醛阳极氧化的影响
Concentration PEG6000/mg·L-1 0 20 25 30 35 40
Oxidation current density/μA·cm-2 471 567 622 751 871 975
表4  PEG6000浓度不同的阳极氧化峰电流密度值
图4  PEG6000浓度对沉积速率的影响
图5  不同PEG6000浓度的化学沉积铜的SEM照片
图6  不同PEG6000浓度的化学沉积铜的EDS图
图7  不同PEG6000浓度化学镀铜沉积层的XRD谱图
Concentration of PEG6000/mg·L-1 Crystallite size/nm I (111)/% I (200)/% I (220)/%
20 77.7 36.7 25.9 37.3
25 69.3 34.0 26.4 39.6
30 59.5 32.6 24.0 43.4
35 52.2 31.5 23.2 45.3
40 50.0 27.1 23.9 49.0
表5  不同PEG6000浓度下铜镀层晶粒尺寸和特征衍射峰强度比
1 Qiu T , Paul K C . Self-selective electroless plating:an approach for fabrication of functional 1D nanomaterials [J]. Mat. Sci. Eng. R: Reports., 2008, 61: 59
2 Hanna F , Hamid Z A , Aal A A . Controlling factors affecting the stability and rate of electroless copper plating [J]. Mater. Lett., 2003, 58(1-2): 104
3 Mishra K G , Paramguru R K . Kinetics and mechanism of electroless copper deposition at moderate-to-high copper ion and low-to-moderate formaldehyde concentrations [J]. Metall. Mater. Trans. B, 1999, 30B: 223
4 Meerakker J E A M van den, Bakker J W G de . On the mechanism of electroless plating .Part 3.Electroless copper alloys [J].J. Appl.Electrochem., 1990, 20(1): 85
5 Shacham-Diamand Y , Osaka T , Okinaka Y , et al . 30 years of electroless plating for semiconductor and polymer micro-systems [J]. Microelectron. Eng., 2015, 132: 35
6 Lu J H , Jiao H D , Jiao S Q . Theoretical basis and prospect of complexes in electroless copper plating process [J]. Electroplat & Finish., 2016, 35(13): 705
6 卢建红, 焦汉东, 焦树强 . 化学镀铜配合物的理论基础及展望[J]. 电镀与涂饰, 2016, 35(13): 705
7 Lin Y M , Yen S C . Effects of additives and chelating agents on electroless copper plating [J]. Appl. Surf. Sci., 2001, 178: 116
8 Lu J H , Jiao H D , Jiao S Q . Effect of sodium 3, 3-dithiodipropane sulfonate in a dual ligand electroless copper system [J]. Chin. J. Eng., 2017, 39(9): 1380
8 卢建红, 焦汉东, 焦树强 . 聚二硫二丙烷磺酸钠在二元络合化学镀铜体系中的作用 [J]. 工程科学学报, 2017, 39(9): 1380
9 Gan X P , Zhou K C , Hu W B ,et alRole of additives in electroless copper plating using hypophosphite as reducing agent [J]. Surf. Coat.Tech., 2012, 206: 3405
10 Chen W S , Luo G Q , Li M J , et al . Effect of 2,2’-dipyridyl on the plating rate, microstructure and performance of copper-coated tungsten composite powders preparedusing electroless plating [J]. Appl. Surf. Sci., 2014, 301: 85
11 Vaskelis A , Jaciauskien J , Stalnionien I , et al . Accelerating effect of ammonia on electroless copper deposition in alkaline formaldehyde-containing solutions [J]. J. Electroanal. Chem., 2007, 600: 6
12 Shingubara S , Wang Z L , Yaegashi O , et al . Bottom-up fill of copper in deep submicrometer holes by electroless plating [J]. Electrochem. Solid. St., 2004, 6:78
13 Gu X , Wang Z C , Lin C J . An Electrochemical study of the effects of chelating agents and additives on electroless copper plating [J]. Electrochem., 2004, 10(1): 14
13 谷 新, 王周成, 林昌健 . 络合剂和添加剂对化学镀铜影响的电化学研究 [J]. 电化学, 2004, 2: 14
14 Yang B , Yang F Z , Huang L , et al . Research of 2, 2’-dipyridine on electroless copper plating using sodium hypophosphite as reductant [J]. Electrochem., 2007,13 (4) :425
14 杨 斌, 杨防祖, 黄 令 等 . 2,2’-联吡啶在化学镀铜中的作用研究 [J]. 电化学, 2007, 13(4): 425
15 Fan J L . Theory and Application of Electroplating Additives [M]. Beijing: National Defense Industry Press, 2006
15 方景礼著 .电镀添加剂理论与应用 [M]. 北京: 国防工业出版社,2006
16 Yu S Y , Qin X C . Study on 96Al2O3 ceramic with electroless copper plating [J]. J. Xi’an Jiaotong Univ., 1995, 1: 34
16 余尚银, 秦效慈 . 96Al2O3瓷上化学镀铜工艺和机理的研究 [J]. 西安交通大学学报, 1995, 1: 34
17 Gan X P , Wu Y T , Liu L , et al . Effects of K4Fe(CN)6 on electroless copper plating using hypophosphite as reducing agent [J]. J. Appl. Electrochem., 2007, 37: 899
18 Cao Q G , Chen S R , Yang Q , et al . Influences of additive on electroless plating in tetrahydroxypropyl ethylenediamine-disodium ethylene diamine tetraacetic acetate Bath [J]. Mater. Prot., 2015, 48(1): 5
18 曹权根, 陈世荣, 杨 琼 等 . 添加剂对四羟丙基乙二胺-乙二胺四乙酸二钠体系化学镀厚铜的影响 [J]. 材料保护, 2015, 48(1): 5
19 Shan D D , Yang F Z , Wu H H . 2,2’-dipyridyl and K4Fe(CN)6 on electroless copper plating using glyoxylic acid as reducing agent [J]. Electrochem., 2007, 13(1): 67
19 申丹丹, 杨防祖, 吴辉煌 . 2,2’联吡啶和亚铁氰化钾对乙醛酸化学镀铜的影响 [J]. 电化学, 2007, 13(1): 67
20 Gao S , Tao R , Yang F . Effect of HEDTA and potassium ferrocyanide on electroless copper coating on the surface of acrylic fabric [J]. Mater. Prot., 2015, 48(10): 4
20 高 嵩, 陶 睿, 杨 帆 . HEDTA、亚铁氰化钾添加剂对腈纶表面化学镀铜的影响 [J]. 材料保护, 2015, 48(10): 4
21 Gan X P . Influences of K4Fe(CN)6 on electroless copper plating using hypophosphite as reducing agent [J]. J. Mater. Eng., 2009, 4: 39
21 甘雪萍 . 亚铁氰化钾对以次磷酸钠为还原剂化学镀铜的影响 [J]. 材料工程, 2009, 4: 39
22 Li J , Kohl Paul A . The deposition characteristics of accelerated nonformaldehyde electroless copper plating [J]. J. Electrochem.Soc., 2003, 150(8): 558
23 Zheng Y J , Zou W H , Yi D Q , et al . Technology and application of electroless copper plating [J]. Mater. Rev., 2005, 19(9): 76
23 郑雅杰, 邹伟红, 易丹青 等 . 化学镀铜及其应用 [J]. 材料导报, 2005, 19(9): 76
24 Hasegawa M , Okinaka Y , Shacham-Diamand Y , et al . Void-free trench-filling by electroless copper deposition using the combination of accelerating and inhibiting additives [J]. J. Electrochem.Solid.St., 2006, 9(8): C138.
25 Gu X , Hu G H , Wang Z C , et al . In situ investigation on the behavior of mixed potential in electroless copper plating [J]. J. Acta Physico-Chimica Sinica, 2004, 20(2): 113
25 谷 新, 胡光辉, 王周成 等 . 化学镀铜过程混合电位本质的研究 [J]. 物理化学学报, 2004, 20(2): 113
26 Bindra P , Roldan J . Mechanisms of electroless metal plating. III.mixed potential theory and the interdependence of partial reactions [J]. J. Appl. Electrochem., 1987, 17: 1254
27 Datu E M , Balela M D L . In situ electrochemical study of copper nanoparticles stabilized with food grade gelatin [J]. Key. Eng. Mat., 2016, 705: 163
28 Inoue F , Philipsen H , Radisic A , et al . Electroless copper bath stability monitoring with UV-VIS spectroscopy, pH, and mixed potential measurements [J]. J . Electrochem. Soc., 2012, 159(7): 437
29 Lee C H , Lee S C , Kim J J . Bottom-up filling in Cu electroless deposition using bis·(3-sulfopropy1) disulfide(sps) [J]. J. Electrochim. Acta., 2005, 50: 3563
30 Lu J H , Jimmy Y , Lei H P , et al . Influence of EDTA/THPED dual-ligand on copper electroless deposition [J]. Int. J. Electrochem. Sci., 2018, 13: 6015
31 Hu F T , Yang S , Wang H Z , et al . Electroless silver coating on copper microcones for low-temperature solid-state bonding [J]. J. Electron. Mater., 2015, 11: 4516
32 Shanmugam N , Cholan S , Kannadasan N , et al . Effect of annealing on the ZnS nanocrystals prepared by chemical precipitation method [J]. J. Nanomater., 2013: 1
33 Andrew K K , Dennis C N . Microstructural evolution during charcoal carbonization by X-ray diffraction analysis [J]. Carbon, 2003, 41(1): 15
34 Zhou F L , Li X M , Gao X D . Effects of surfactants on electroless Ni-P plating on Al2O3 ceramic and properties of coatings [J]. Chin.J.Inorg.Chem., 2009, 25(9): 1584
34 周凤玲, 李效民, 高相东 . 表面活性剂对陶瓷基底化学镀镍的作用机理及镀层性能的影响 [J]. 无机化学学报, 2009, 25(9): 1584
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[15] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.