Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (6): 467-474    DOI: 10.11901/1005.3093.2018.607
  研究论文 本期目录 | 过刊浏览 |
PECVD工艺制备功能装饰氧化硅薄膜的性能
张栋1,柯培玲1(),汪爱英1(),王香勇2,智理2
1. 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室;浙江省海洋材料与防护技术重点实验室 宁波 315201
2. 宁波中骏森驰汽车零部件股份有限公司 慈溪 315300
Properties of Functional Decorative Silicon Oxide Films Prepared by PECVD
Dong ZHANG1,Peiling KE1(),Aiying WANG1(),Xiangyong WANG2,Li ZHI2
1. Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2. Ningbo Zhong-Jun Sen-Chi Auto Parts Limited by Share Ltd. , Cixi 315300, China
引用本文:

张栋,柯培玲,汪爱英,王香勇,智理. 用PECVD工艺制备功能装饰氧化硅薄膜的性能[J]. 材料研究学报, 2019, 33(6): 467-474.
Dong ZHANG, Peiling KE, Aiying WANG, Xiangyong WANG, Li ZHI. Properties of Functional Decorative Silicon Oxide Films Prepared by PECVD[J]. Chinese Journal of Materials Research, 2019, 33(6): 467-474.

全文: PDF(5883 KB)   HTML
摘要: 

用PECVD技术制备氧化硅薄膜,研究了生成样品的位置对薄膜成分、结构和性能的影响,探讨了制备兼具高透光性和耐刮擦性的功能装饰氧化硅薄膜的方法。结果表明,在阳极位置生成的薄膜具有Si(CH3)nO有机氧化硅结构,在380~780 nm波长范围内透光率高达90%~98%,但是薄膜的结构疏松,硬度仅为2 GPa。提高制备温度可使薄膜硬度提高至6 GPa,但是透光率略有降低;在阴极位置生成的薄膜具有无机氧化硅复合非晶碳结构,薄膜结构致密,硬度可达15 GPa,但是在380~780 nm波长范围内透光性差;增加O2反应气体可促使碳与氧反应生成二氧化碳,非晶碳结构消失,薄膜透光率提高到99%,但是硬度降低到9 GPa。

关键词 材料表面与界面氧化硅薄膜等离子体增强化学气相沉积功能装饰    
Abstract

Silicon oxide films were prepared on silicon- and quartz-substrate by plasma enhanced chemical vapor deposition (PECVD) technique. The dependence of composition, structure and properties of the films were investigated on the location of substrates in the reaction chamber, namely, which were fixed onto either cathode- or anode-electrode plate. Meanwhile, the preparation of functional decorative silicon oxide films with high transparency and scratch resistance was assessed in terms of processing parameters. The results show that the film synthesized on the substrate attached to anode is organosilicon oxide of Si (CH3)nO with transmittance of as high as 90%~98% in the wavelength range of 380-780 nm, unfortunately, the film is loose with hardness of only 2 GPa. However, the hardness of the film can be increased to 6 GPa by increasing the substrate temperature, as a result, the transmittance of the film decreases slightly; The film synthesized on the substrate attached to the cathode composes of inorganic silicon oxide and amorphous carbon. That film is compact with hardness of up to 15 GPa, but poor transmittance in the wavelength range of 380~780 nm. Increasing the O2-flux can promote the reaction of carbon and oxygen to produce carbon dioxide, thereby to eliminate the amorphous carbon. Therefore, the transmittance of the film increases to 99%, but the hardness decreases down to 9 GPa.

Key wordssurface and interface in the materials    silicon oxide films    PECVD    functional decoration
收稿日期: 2018-10-12     
ZTFLH:  TB34  
基金资助:宁波市工业重点项目(2017B10042);慈溪市工业科技计划(2015A07)
作者简介: 张 栋,女,1983年生,高级工程师
图1  氧化硅薄膜制备设备的示意图
图2  阴极薄膜和阳极薄膜的截面微观形貌
图3  阴极和阳极薄膜的红外吸收光谱
图4  阴极和阳极薄膜的拉曼光谱
图5  阴极和阳极薄膜的XPS图谱中的 Si2p峰
图6  阴极和阳极薄膜在可见光范围内的透过率
图7  阴极和阳极薄膜的纳米压痕测试结果
图8  在250℃制备的阳极薄膜的截面微观形貌
图9  在不同温度制备的阳极薄膜的红外吸收光谱
图10  在不同温度制备的阳极薄膜的XPS图谱Si2p峰
图11  在不同温度制备的阳极薄膜的纳米压痕测试结果
图12  在不同温度制备的阳极薄膜在可见光范围内的透过率
图13  增加O2反应气体后阴极薄膜的截面微观形貌
图14  使用不同气源制备的阴极薄膜的红外吸收光谱
图15  使用不同气源制备的阴极薄膜的XPS图谱Si2p峰
图16  使用不同气源制备的阴极薄膜在可见光范围内的透过率
图17  使用不同气源制备的阴极薄膜的硬度
[1] Bai X Q, Li J, Yan X P, et al.Application of vacuum coating technology to metallization of plastics [J]. Journal Of Wuhan University Of Technology, 2005, 29(6): 948
[1] (白秀琴, 李 健, 严新平等. 真空镀膜技术在塑料表面金属化上的应用 [J]. 武汉理工大学学报, 2005, 29(6): 948)
[2] Zhang D, Sun L L, Zheng H, et al.Study of magnetron reactive sputtering CrNX decoration films with functional protection [J]. China Surface Engineering, 2010, 23(3): 38
[2] (张 栋, 孙丽丽, 郑 贺等. 直流反应磁控溅射CrNX功能装饰涂层的研究 [J]. 中国表面工程, 2010, 23(3): 38)
[3] Wang L S, Jiang Y G, Jiang C H, et al.Effect of oxygen flow rate on microstructure properties of SiO2 thin films prepared by ion beam sputtering [J]. Journal Of Non-Crystalline Solids, 2018, 482: 203
[4] Liu H S, Jiang Y G, Liu D D, et al. Thermal effect on microstructure vibration of SiO2 thin films [J]. Vibrational Spectroscopy, 2018, 96: 101
[5] Seung-Jae J., Byoung-June K., Myunghun S.. Low-refractive-index and high-transmittance silicon oxide with a mixed phase of n-type microcrystalline silicon as intermediate reflector layers for tandem solar cells [J]. Solar Energy Materials & Solar Cells, 2014, 121: 1
[6] Barranco A., Yubero F., Cotrino J., et al. Low temperature synthesis of dense SiO2 thin films by ion beam induced chemical vapor deposition [J]. Thin Solid Films, 2001, 396: 9
[7] Barranco A., Yubero F., Espin′os J. P., et al. Room temperature synthesis of SiO thin films by ion beam induced and plasma enhanced CVD [J]. Surface and Coatings Technology, 2001, 142-144: 856
[8] Amri R., Sahel S., Manaa C., et al. Experimental evidence of the photonic band gap in hybrid one-dimensional photonic crystal based on a mixture of (HMDSO, O2) [J]. Superlattices And Microstructures, 2016, 96: 273
[9] Barranco A., Cotrino J., Yubero F., et al. A structural study of organo-silicon polymeric thin films deposited by remote microwave plasma enhanced chemical vapour deposition [J]. Surface And Coatings Technology, 2004, 180-181: 244
[10] Zakirov A. S., Khabibullaev P. K., ChiKyuChoi. Structural characterization and electro-physical properties for SiOC(–H) low-k dielectric films [J]. Physica B, 2009, 404: 5218
[11] ArupSamanta, DebajyotiDas.Studies on the structural properties of SiO:H films prepared from (SiH4+CO2+He) plasma in RF-PECVD [J]. Solar Energy Materials & Solar Cells, 2009, 93: 588
[12] Barranco A., Cotrino J., Yubero F., et al. Synthesis of SiO2 and SiOxCyHz thin films by microwave plasma CVD [J]. Thin Solid Films, 2001, 401: 150
[13] Amri R., Sahel S., Gamra D., et al. Photonic band gap and defects modes in inorganic/organic photonic crystal based on Si and HMDSO layers deposited by sputtering and PECVD [J]. Optical Materials, 2018, 76: 222
[14] Amri R., Sahel S., Gamra D., et al. Photonic band gap and defect mode of one-dimensional photonic crystal coated from a mixture of (HMDSO, N2) layers deposited by PECVD [J]. Superlattices and Microstructures, 2017, 104: 298 (2017)
[15] Hyunju J., Jeadong C. Fabrication and evaluation of protective SiOx layers using plasma-enhanced chemical vapor deposition [J]. Surface & Coatings Technology, 2017, 330: 71
[16] Hyunju J., Jeadong C.. Characterization of interfacial layers grown between magnesium substrates and SiOx films deposited by plasma-enhanced CVD [J]. Surface & Coatings Technology, 2017, 332: 105
[17] Nazir M. Santos, Thais M. Gon?alves, Jayr de Amorim,et al.Effect of the plasma excitation power on the properties of SiOxCyHz films deposited on AISI 304 steel [J]. Surface & Coatings Technology, 2017, 311: 127
[18] Sergei E. Alexandrov, Neil McSporran, Michael L. Hitchman, Remote AP-PECVD of Silicon Dioxide Films from Hexamethyldisiloxane(HMDSO) [J]. Chemical Vapor Deposition, 11, 481(2005)
[19] Cho S. -H., Park Z. -T., Kim J. -G.,et al. Physical and optical properties of plasma polymerized thin films deposited by PECVD method [J]. Surface and Coatings Technology, 2003, 174-175: 1111
[20] RinoMorent, Nathalie D G, Sandra V V, et al. Organic-inorganic behaviour of HMDSO films plasma-polymerized at atmospheric pressure [J]. Surface & Coatings Technology, 2009, 203: 1366
[21] Mei Y, Jia X, An C H, et al. Microstructure adjustment and optical absorption properties of silicon oxide films containing silicon nanocrystals [J]. Journal Of Materials Science & Engineering, 2016, 34(5): 776
[21] (梅 艳, 贾 曦, 安彩虹等. 镶嵌纳米晶硅的氧化硅薄膜微观结构调整及其光吸收特性 [J]. 材料科学与工程学报, 2016, 34(5): 776)
[22] Yu W, Wang J T, Li Y, et al. Low-temperature deposition and bonding performance of silicon nanocrystals in silicon oxide films [J]. Journal Of Synthetic Crystals, 2013, 42(6): 1035
[22] (于 威, 王建涛, 李 云等. 氧化硅中纳米晶硅薄膜的低温沉积及其键合特性研究 [J]. 人工晶体学报, 2013, 42(6): 1035)
[23] Qi F Y, Chen Q, Liu F P. Oxygen concentration and properties of SiOx coating deposited in roll-to-roll process [J]. Chinese Journal Of Vacuum Science And Technology, 2012, 32(9): 841
[23] (齐凤阳, 陈 强, 刘福平. Roll-to-roll MPECVD 中氧气浓度对氧化硅薄膜性能的影响 [J]. 真空科学与技术学报, 2012, 32(9): 841)
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[15] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.