Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (12): 898-904    DOI: 10.11901/1005.3093.2018.355
  研究论文 本期目录 | 过刊浏览 |
碱激发煤矸石-矿渣胶凝材料的性能和胶结机理
马宏强, 易成(), 陈宏宇, 石晶, 李为健, 郭咏冬
中国矿业大学(北京)力学与建筑工程学院 北京 100083
Property and Cementation Mechanism of Alkali-activated Coal Gangue-slag Cementitious Materials
Hongqiang MA, Cheng YI(), Hongyu CHEN, Jing SHI, Weijian LI, Yongdong GUO
(School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)
引用本文:

马宏强, 易成, 陈宏宇, 石晶, 李为健, 郭咏冬. 碱激发煤矸石-矿渣胶凝材料的性能和胶结机理[J]. 材料研究学报, 2018, 32(12): 898-904.
Hongqiang MA, Cheng YI, Hongyu CHEN, Jing SHI, Weijian LI, Yongdong GUO. Property and Cementation Mechanism of Alkali-activated Coal Gangue-slag Cementitious Materials[J]. Chinese Journal of Materials Research, 2018, 32(12): 898-904.

全文: PDF(2350 KB)   HTML
摘要: 

使用氢氧化钠(NH)和硅酸钠(NS)作碱激发剂制备煤矸石-矿渣地聚复合材料,研究矿渣掺量和NH模数对碱激发煤矸石-矿渣(AACGS)胶凝材料的净浆流动度和抗压强度的影响,并借助XRD、FT-IR、MAS NMR和SEM-EDS深入探讨材料的性能和胶结机理。结果表明:矿渣掺量对材料的净浆流动性和抗压强度有显著的影响,而NH模数只显著影响抗压强度。碱激发煤矸石-矿渣试样具有更高的早期强度,且当矿渣掺量超过20%时其28 d强度也比P.O42.5纯水泥试样的高。随着矿渣掺量的增加水化产物中硅酸盐结构的聚合度增大,与抗压强度的结果一致。Ca2+具有比Na+更强的驱动吸附能力,矿渣掺量从0增加到50%使基体更密实,且其微结构中的C-(A)-S-H具有更高的Ca/Si比和低的Al/Si比。C-A-S-H和C-S-H凝胶与N-A-S-H凝胶共同构成AACGS的网状无序结构,具有很好的相容性。

关键词 复合材料碱激发煤矸石-矿渣净浆流动度聚合度胶结机理    
Abstract

The geopolymer composites of coal gangue-slag were prepared with sodium hydroxide (NH) and sodium silicate (NS) as activator. The effect of slag content and NH modules on the fluidity of cement pastes and compressive strength of alkali-activated coal gangue-slag (AACGS) cementitious materials was investigated. The property of the prepared cementitious materials and the relevant cementation mechanism were investigated by means of mechanical test, XRD, FT-IR, MAS NMR and SEM-EDS. Results show that the slag content has significant effect on the pastes fluidity and compressive strength, while the NH module only has significant effect on the compressive strength of AACGS cementitious materials. Higher early strength may be produced for AACGS materials, for instance, when the slag content exceeds 20%, the 28 d strength is also higher than that of P. O42.5 pure cement. With the increase of slag content, the higher polymerization degree emerged for the silicate structure in the hydration products, which is consistent with the measured results of compressive strength. Since that Ca2+ has a stronger drive adsorption force than Na+, therewith the increase of slag content from 0 to 50% may result in denser matrix, of which the C-(A)-S-H in the microstructure has higher Ca/Si ratio but lower Al/Si ratio. The disordered network structure of AACGS, which consists of C-A-S-H gels and C-S-H gels and N-A-S-H gels, has good compatibility.

Key wordscomposites    alkali-activated coal gangue-slag    paste fluidity    polymerization degree    cementation mechanism
收稿日期: 2018-05-29     
基金资助:国家自然科学基金(51578539),北京市自然科学基金(8164061),中国矿业大学煤炭资源与安全开采国家重点实验室项目(SKLCRSM16KFD07)
作者简介:

作者简介 马宏强,男,1992年生,博士生

图1  煤矸石和矿渣粒径
Materials SiO2 Al2O3 CaO Fe2O3 MgO Na2O TiO2
CG 56.56 36.78 0.62 1.95 0.22 0.42 2.10
SG 30.58 14.04 38.43 0.35 10.57 0.57 1.93
表1  胶凝材料的主要化学成分
图2  原状和700℃煅烧煤矸石的XRD谱
Specimens NH solution molarity/M Binder coal gangue: slaga NH/NSa Liquid-solid ratio Paste fluidity/mm
OPC 0.36 60.0
S0-12 12 100:0 1:2 0.36 138.0
S10-12 12 90:10 1:2 0.36 147.8
S20-12 12 80:20 1:2 0.36 150.8
S30-12 12 70:30 1:2 0.36 162.3
S40-12 12 60:40 1:2 0.36 166.5
S50-12 12 50:50 1:2 0.36 170.5
S30-8 8 70:30 1:2 0.36 160.8
S30-10 10 70:30 1:2 0.36 160.5
S30-14 14 70:30 1:2 0.36 157.3
S30-16 16 70:30 1:2 0.36 160.5
表2  碱激发煤矸石-矿渣浆体的配合比
图3  不同矿渣掺量的碱激发煤矸石-矿渣试样抗压强度曲线
图4  不同NH模数的碱激发煤矸石-矿渣试样抗压强度曲线
图5  不同矿渣掺量AACGS试样的XRD谱
图6  S0-12和S30-12试样的FTIR谱
图7  试样S0-12、S30-12和S50-12的29Si MAS NMR谱
图8  碱激发煤矸石-矿渣浆体破碎表面的SEM-EDS分析
[1] Wang J, Wu X L, Wang J X, et al.Hydrothermal synthesis and characterization of alkali-activated slag-fly ash-metakaolin cementitious materials[J]. Micropor. Mesopor. Mater., 2012, 155: 186
[2] Li Y J, Yan X P, Zhang X, et al.Experimental research on seismic behavior of reinforced concrete column composed of coal gangue aggregate[J]. J. Chin. Coal Soc., 2013, 38: 1006(李永靖, 闫宣澎, 张旭等. 煤矸石骨料钢筋混凝土柱的抗震性能试验研究[J]. 煤炭学报, 2013, 38: 1006)
[3] Guo W, Li D X, Chen J H, et al.Structure and pozzolanic activity of calcined coal gangue during the process of mechanical activation[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2009, 24: 326
[4] Yi C, Ma H Q, Zhu H G, et al.Study on chloride binding capability of coal gangue based cementitious materials[J]. Constr. Build. Mater., 2018, 167: 649
[5] Yi C, Ma H Q, Zhu H G, et al.Investigation on anti-carbonation performance of coal gangue coarse aggregate concrete[J]. J. Build. Mater., 2017, 20: 787(易成, 马宏强, 朱红光等. 煤矸石粗集料混凝土抗碳化性能研究[J]. 建筑材料学报, 2017, 20: 787)
[6] Ben Haha M, Le Saout G, Winnefeld F, et al.Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags[J]. Cem. Concr. Res., 2011, 41: 301
[7] Puertas F, Palacios M, Manzano H, et al.A model for the C-A-S-H gel formed in alkali-activated slag cements[J]. J. Eur. Ceram. Soc., 2011, 31: 2043
[8] Cui X W, Ni W, Ren C.Hydration mechanism of all solid waste cementitious materials based on steel slag and blast furnace slag[J]. Chin. J. Mater. Res., 2017, 31: 687(崔孝炜, 倪文, 任超. 钢渣矿渣基全固废胶凝材料的水化反应机理[J]. 材料研究学报, 2017, 31: 687)
[9] Pacheco-Torgal F, Castro-Gomes J, Jalali S.Alkali-activated binders: a review: Part 1. Historical background, terminology, reaction mechanisms and hydration products[J]. Constr. Build. Mater., 2008, 22: 1305
[10] Zuda L, Drchalová J, Rovnaník P, et al.Alkali-activated aluminosilicate composite with heat-resistant lightweight aggregates exposed to high temperatures: mechanical and water transport properties[J]. Cem. Concr. Comp., 2010, 32: 157
[11] Huang G D, Ji Y S, Li J, et al.Improving strength of calcinated coal gangue geopolymer mortars via increasing calcium content[J]. Constr. Build. Mater., 2018, 166: 760
[12] T?nzer R, Buchwald A, Stephan D.Effect of slag chemistry on the hydration of alkali-activated blast-furnace slag[J]. Mater. Struct., 2015, 48: 629
[13] Zhang C S, Xue J P, Fang L M.Mechanical properties and microstructures of alkali activated burned coal gangue cementitious material[J]. J. Chin. Ceram. Soc., 2004, 32: 1276(张长森, 薛建平, 房利梅. 碱激发烧煤矸石胶凝材料的力学性能和微观结构[J]. 硅酸盐学报, 2004, 32: 1276)
[14] Provis J L, Myers R J, White C E, et al.X-ray microtomography shows pore structure and tortuosity in alkali-activated binders[J]. Cem. Concr. Res., 2012, 42: 855
[15] Phair J W, van Deventer J S J. Effect of the silicate activator PH on the microstructural characteristics of waste-based geopolymers[J]. Int. J. Miner. Process., 2002, 66: 121
[16] Heikal M, Nassar M Y, El-Sayed G, et al.Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag[J]. Constr. Build. Mater., 2014, 69: 60
[17] Ismail I, Bernal S A, Provis J L, et al.Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash[J]. Cem. Concr. Comp., 2014, 45: 125
[18] Lancellotti I, Catauro M, Ponzoni C, et al.Inorganic polymers from alkali activation of metakaolin: effect of setting and curing on structure[J]. J. Solid State Chem., 2013, 200: 341
[19] Ye H L, Radlińska A.Shrinkage mechanisms of alkali-activated slag[J]. Cem. Concr. Res., 2016, 88: 126
[20] Melo Neto A A, Cincotto M A, Repette W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement[J]. Cem. Concr. Res., 2008, 38: 565
[21] Cartwright C, Rajabipour F, Radlińska A.Shrinkage characteristics of alkali-activated slag cements[J]. J. Mater. Civil. Eng., 2015, 27: B4014007
[22] Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, et al.Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O[J]. Cem. Concr. Res., 2011, 41: 923
[23] Guo X L, Shi H S, Xia M.Effect of different calcium resouces on reaction mechanism of geopolymer[J]. Chin. J. Mater. Res., 2016, 30: 348(郭晓潞, 施惠生, 夏明. 不同钙源对地聚合物反应机制的影响研究[J]. 材料研究学报, 2016, 30: 348)
[24] Weng L, Sagoe-Crentsil K.Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I—Low Si/Al ratio systems[J]. J. Mater. Sci., 2007, 42: 2997
[25] Zhang C S, Fang L M.Hardening mechanisms of alkali activated burned gangue cementitious material[J]. Mater. Sci. Technol., 2004, 12: 597(张长森, 房利梅. 碱激发烧煤矸石胶凝材料的硬化机理研究[J]. 材料科学与工艺, 2004, 12: 597)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.