Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (11): 843-852    DOI: 10.11901/1005.3093.2017.771
  本期目录 | 过刊浏览 |
过饱和固溶合金元素在粉末冶金石墨黄铜中的析出强化
李树丰1,2(), 今井久志2, 近藤胜义2, 张鑫1, 潘登1, 付亚波3
1 西安理工大学材料科学与工程学院 西安 710048
2 大阪大学接合科学研究所 大阪 5670047 日本
3 台州大学物理与电子工程学院 台州 318000
Precipitation Strengthening of Supersaturated Alloying Elements in Cu40Zn Graphite Brasses Prepared by Powder Metallurgy
Shufeng LI1,2(), Imai Hisashi2, Kondoh Katsuyoshi2, Xin ZHANG1, Deng PAN1, Yabo FU3
1 School of Materials Science and Engineering, Xian University of Technology, Xian 710048, China
2 Joining and Welding Research Institute, Osaka University, Osaka 5670047, Japan
3 School of Physics and Electronic Engineering, Taizhou University, Taizhou 318000, China
引用本文:

李树丰, 今井久志, 近藤胜义, 张鑫, 潘登, 付亚波. 过饱和固溶合金元素在粉末冶金石墨黄铜中的析出强化[J]. 材料研究学报, 2018, 32(11): 843-852.
Shufeng LI, Imai Hisashi, Kondoh Katsuyoshi, Xin ZHANG, Deng PAN, Yabo FU. Precipitation Strengthening of Supersaturated Alloying Elements in Cu40Zn Graphite Brasses Prepared by Powder Metallurgy[J]. Chinese Journal of Materials Research, 2018, 32(11): 843-852.

全文: PDF(9973 KB)   HTML
摘要: 

用水雾化制备了含Cr、Fe、Sn、Ti多元过饱和固溶合金元素的Cu40Zn黄铜合金粉末,将其与石墨颗粒预混合后在适当的温度烧结,热挤压后得到棒材。观测挤压棒材中石墨黄铜的微观组织并测量其切削性能和拉伸性能,研究了合金元素和石墨颗粒对切削性能和力学性能的影响。结果表明:黄铜粉末中的过饱和固溶合金元素Cr、Fe、Sn、Ti在后续的热加工过程中以微/纳米尺寸微粒析出,表现出优良的强化效果;合金元素在石墨/黄铜界面的富集和反应促进了石墨/黄铜的界面结合,提高了黄铜的切削性能但是不降低其力学性能。

关键词 有色金属及其合金石墨黄铜粉末冶金无铅力学性能切削性能    
Abstract

Cr, Fe, Ti and Sn were added to brass matrix as trace alloying elements. The brass alloys powder prepared by water atomization process were premixed with graphite particles and consolidated at appropriate temperature. The sintered billet was hot extruded to increase the density and prepare extrusion rod for tensile test. The effects of graphite particles and alloying elements on the machinability, microstructural and mechanical properties of Cu40Zn brass were investigated in detail. It was found that the super-saturated solid solution of Cr, Fe and Ti creates a high precipitation reaction chemical potential in water atomized brass powder, which precipitated in form of nano/micro scale particles in the subsequent hot working showing superior strengthening effect. Graphite particles with appreciate content can improve machinability effectively without deteriorating the mechanical properties.

Key wordsnon-ferrous metal and alloy    graphite brass    powder metallurgy    lead-free    mechanical properties    machinability
收稿日期: 2017-12-28     
ZTFLH:  TG146  
基金资助:国家自然科学基金(51571160和51871180),日本科学技术振兴学会的科学研究财政补贴(A)(25249102)
作者简介:

作者简介 李树丰,男,1973年生,教授

图1  水冷雾化制粉过程及试样制备流程示意图
图2  实验用BS40-M原始黄铜粉末和原料的显微组织照片
图3  B40-1.0Cr1.0Gr石墨黄铜显微组织及其力学性能
图4  BS40-1.0Ti0.6Sn黄铜合金在不同温度烧结及挤压后的微观组织照片
图5  (a) BS40-1.0Ti0.6Sn黄铜在不同温度下烧结试样的XRD衍射图谱;(b) 铸态合金显微照片;(c) 铸态合金的EDS元素分析图谱
图6  (a) 在不同温度烧结的BS40-1.0Ti0.6Sn黄铜合金挤压试样的应力应变曲线;(b) 673 K烧结试样断口形貌;(c) 873 K烧结试样断口形貌
图7  多元合金元素对BS40-M黄铜合金组织及其性能的影响
图8  BS40-M石墨黄铜的力学性能和切削性能
[1] Davis J R.Alloying, Understanding the Basics [Z], ASM International, Materials Park,OH, 2001, 44073-0002
[2] Pantazopoulos G, Vazdirvanidis A.Characterization of the microstructural aspects of machinable α-β phase brass[J]. Microscopy and Analysis, 2008, 9: 13
[3] Vilarinho C, Davimb J P, Soares D, et al.Influence of the chemical composition on the machinability of brasses[J]. Journal of Materials Processing Technology, 2005, 170: 441
[4] European restriction of the use of certain hazardous substances in electricaland electronic equipment, Official Journal L 037,13/02/2003 P.0019-0023, content/EN/TXT/?uri=CELEX:32002L0095
[5] Li S, Imai H, Atsumi H, et al.Characteristics of high strength extruded BS40CrFeSn alloy prepared by spark plasma sintering and hot pressing[J]. Journal of Alloys and Compounds, 2010, 493: 128
[6] Whiting L, Newcombe P, Sahoo M.Casting Characteristics of Red Brass Containing Bismuth and Selenium[J]. AFS Trans. 1995, 103: 683
[7] Peter D.New bismuth/selenium red brass alloys solve lead concerns[J]. Mod. Casting, 1997: 87
[8] Kondoh K, Kosaka Y, Okuyama M, et al.Collected Abstracts of 46th technology Conference of Japan Copper and Brass Association[C]. 2006, 153
[9] Saigal A, Rohatgi P.Machinability of cast lead free yellow brass containing graphite particles[J]. AFS Trans. 1996, 104: 225
[10] Vilarinho C, Davim J P, Soares D, et al.Influence of the chemical composition on the machinability of brasses[J]. J. Mater. Pro. Technol. 2005, 170: 441
[11] Cabral G, Reis P, Polini R, et al. Cutting performance of time-modulated chemical vapor deposited diamond coated tool inserts during machining graphite [J]. Diamond Related Mater.2006, 15-10: 1753
[12] Suresha B, Siddaramaiah, Kishore, et al.Investigations on the influence of graphite filler on dry sliding wear and abrasive wear behavior of carbon fabric reinforced epoxy composites[J]. Wear 2009, 267: 1405
[13] Zhao H, Liu L, Wu Y, et al.Investigation on wear and corrosion behavior of Cu-graphite composites prepared by electroforming[J]. Comp. Sci. 2007, 67: 1210
[14] Huang J S, Peng C Q, Zhang S Q, et al.Lead free cutting copper alloys[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(9): 1486(黄劲松, 彭超群, 章四琪等. 无铅易切削铜合金[J]. 中国有色金属学报, 2006, 16(9): 1486)
[15] Zhang Q Z.The effect of graphite particle size on the properties of copper-graphite composites made with copper-coated and uncoated graphite powders via electroless copper plating[M]. Fuzhou: Fuzhou University, 2004(张钦钊. 石墨粒度及其表面化学镀铜对铜—石墨复合材料性能的影响[M]. 福州: 福州大学, 2004)
[16] Zhang H M, He X B, Shen X Y, et al.Microstructure and thermal properties of Mo-coated graphite fiber/Cu composites[J]. Chinese Journal of Nonferrous Metals, 2013, 23(4): 1092(张昊明, 何新波, 沈晓宇等. 镀钼石墨纤维/铜复合材料的微观组织和热性能[J], 中国有色金属学报, 2013, 23(4): 1092)
[17] Kim J K, Rohatgi P K, Choi J O.Wear properties and effect of molds on microstructure of graphite reinforced copper alloy composites made by centrifugal casting[J]. Metals and Materials International, 2005, 11(4): 333
[18] Rohatgi P K, Nath D, Kim J K.Corrosion and de-alloying of cast lead-free copper alloy-graphite composites[J]. Corrosion Science, 2000, 42(9): 1553
[19] Huang J S, Zhou Z C.A lead-free Machinable silicon graphite brass [P]. Chin Pat, 10030662, 2008(黄劲松, 周忠诚. 一种无铅易切削硅石墨黄铜 [P].中国专利, 10030662, 2008)
[20] Xue Y Y, Tang J C, Zhuo H O.Microstructures and properties of leadfree free-cutting graphite-brass prepared by graphitization of cementite[J]. Acta Metallurgica Sinica, 2015, 51(2): 223(薛滢妤, 唐建成, 卓海鸥等. 渗碳体石墨化制备无铅易切削石墨黄铜的组织及性能[J]. 金属学报,2015, 51(2): 223)
[21] ASM metals handbook, alloy phase diagrams[Z], ASM Handbook,OH, 1990, 3, 10th edt.
[22] Fernee H, Nairn J, Atrens A.Precipitation harding of Cu-Fe-Cr alloy[J]. J. Mater Sci, 2001, 36: 5497
[23] Lu D P, Wang J, Zeng W J, Liu Y, Lu L, Sun B D.Study on high-strength and high-conductivity Cu-Fe-P alloys[J]. Mater Sci Eng A, 2006, 421: 254
[24] Vaidyanathan T K, Mukherjee K.Precipitation in Cu-Ti and Cu-Ti-Al alloys; discontinuous and localized precipitation[J]. Mater Sci Eng, 1976, 24: 143
[25] Liu P, Su J, Dong Q, et al.Microstructure and properties of Cu-Cr-Zr alloy after rapidly solidified aging and solid solution aging[J]. J Mater Sci Technol, 2005, 21: 475
[26] Artens A, Nairn J, Fernee H, et al.Cold worked Cu-Fe-Cr alloys[J]. Mater Forum, 1997, 21: 57
[27] Laughlin D E, Cahn J W.Spinodal decomposition in age hardening copper-titanium alloys[J]. Acta Metall, 1975, 23: 329
[28] Poter A, Thompson A W.On the mechanism of precipitation strengthening in Cu-Ti alloys[J]. Scripta Metall, 1984, 18:1185
[29] Kumar KCH, Ansara I, Wollants P, et al.Thermodynamic optimization of the Cu-Ti system[J]. Z Metall, 1996, 87: 666
[30] Imai H, Li S, Kondoh K, et al.Effect of chromium precipitation on machinability of sintered brass alloys dispersed with graphite particles[J]. Materials Transactions, 2011, 52(7): 1426
[31] Fernee H, Nairn J, Atrens A.Cold worked Cu-Fe-Cr alloys[J]. Journal of Materials Science 2001, 36: 5497
[32] Mao W, An Z, Li Y.Challenges of the study of precipitation behaviors of MnS in oriented electrical steels[J]. Frontiers of Materials Science in China, 2008, 2: 233
[33] Mao W, An Z, Guo W, et al.Influence of temperature evolution on precipitation behavior of second phase particles in grain-oriented electrical steel[J]. Steel Research International, 2010, 81: 6
[34] Sun W P, Militzer M, Jonas J J.Strain-induced nucleation of MnS in electrical steels[J]. Metallurgical Transactions, 1992, 23A: 821
[35] Shufeng Li, Hisashi Imai, Katsuyoshi Kondoh, et al.Development of precipitation strengthened brass with Ti and Sn alloying elements additives by using water atomized powder via powder metallurgy route[J]. Materials Chemistry and Physics, 2012, 135: 644
[36] Shufeng Li, Hisashi Imai, Haruhiko Atsumi, et al.Phase transformation and precipitation hardening behavior of Cr and Fe in BS40CrFeSn alloy[J]. J Mater Sci, 2010, 45:5669
[37] Kondoh K, Imai H, Li S, et al.Study of lead-free and machinable high-strength P/M brass alloys[C], Proceedings of Spring Meeting of JSMP.111, Tokyo, 2013, 27
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[6] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[9] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[10] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[11] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[12] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[13] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.
[15] 刘东洋, 童广泽, 高文理, 王卫凯. 2060铝锂合金厚板的各向异性[J]. 材料研究学报, 2023, 37(3): 235-240.