Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (6): 465-471    DOI: 10.11901/1005.3093.2016.512
  本期目录 | 过刊浏览 |
热喷涂用纳米NiCrCoAlY-TiB2结构喂料的制备及其性能研究
王记中1,2,车晓舟1,吴姚莎2,王刚1,2,余红雅1,2,曾德长1()
1. 华南理工大学材料科学与工程学院 广州 510640
2. 广东正德材料表面科技有限公司 中山 528437
Properties of Nano-composite Powders of NiCrCoAlY-TiB2 Prepared by High Energy Ball Milling for High Velocity Air Fuel Spraying
Jizhong WANG1,2,Xiaozhou CHE1,Yaosha WU2,Gang WANG1,2,Hongya YU1,2,Dechang ZENG1()
1. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2. Gent Materials Surface Technology (Guangdong) Co., Ltd, Zhongshan 528437, China
引用本文:

王记中,车晓舟,吴姚莎,王刚,余红雅,曾德长. 热喷涂用纳米NiCrCoAlY-TiB2结构喂料的制备及其性能研究[J]. 材料研究学报, 2017, 31(6): 465-471.
Jizhong WANG, Xiaozhou CHE, Yaosha WU, Gang WANG, Hongya YU, Dechang ZENG. Properties of Nano-composite Powders of NiCrCoAlY-TiB2 Prepared by High Energy Ball Milling for High Velocity Air Fuel Spraying[J]. Chinese Journal of Materials Research, 2017, 31(6): 465-471.

全文: PDF(6047 KB)   HTML
摘要: 

采用高能球磨技术制备了NiCrCoAlY-TiB2纳米复合金属陶瓷粉体,用XRD、SEM、松装密度仪、振实密度仪、休止角测量仪和激光粒度仪等对粉体的微观组织结构和性能进行了表征。结果表明,在氩气氛保护下先在转速320 r/min下湿磨20 h,再在转速220 r/min下干磨5 h之后,实现了NiCrCoAlY和TiB2混合粉末在纳米尺度下的稳定复合,该复合粉末呈椭圆状,粒径集中分布在5~50 μm。与初始混合粉体相比,休止角从38.4°降低到32.9°,HR值从1.925减小到1.248,流动性得到明显改善。

关键词 复合材料NiCrCoAlY-TiB2结构喂料高能球磨金属陶瓷纳米粉体    
Abstract

Flowability is a prerequisite for the applicability of powders for thermal spraying. Nanoscale feedstock of NiCrCoAlY-TiB2MMCs (metal matrix composites) was synthesized by high energy ball milling method with NiCrCoAlY and TiB2 powders as raw material, and argon as shielding gas. The milled powder was characterized by scanning electron microscope, X-ray diffraction, apparent density tester, tap-density tester, repose angle tester and laser scattering. The results show that after wet-milled at 320 r/min for 20 h and dry-milled at 220 r/min for 5 h, a stable nanoscale feedstock of NiCrCoAlY-TiB2 MMCs was obtained. The particle size ranges from 5 to 50 μm and a majority of the powders shows ellipsoidal morphology which is expected to have good fluidity during HVOF spraying. Compared with the initial mixed powders, the repose angle of milled powders reduces from 38.4° to 32.9°, HR value reduces from 1.925 to 1.248, indicating the flowability has been improved obviously.

Key wordscomposite    NiCrCoAlY-TiB2 nanostructured feedstock    high energy ball milling    cermet    nano-powder
收稿日期: 2016-08-29     
基金资助:中山市科技计划(2014年创新团队, 2015F1FC00036, 2016F2FC0005)
Material Ni Cr Co Al Y Si B C Fe Ti O N
NiCrCoAlY Bal. 16~22 4~8 3~7 0.2~0.6 - - 0.2~0.7 <1 - - -
TiB2 - - - - - - 30.8 0.13 0.15 68.2 0.4 0.02
表1  喷涂原料TiB2和NiCrCoAlY的化学成分
Hausner value Compressibility/% Flowability
<1.2 <15 Excellent
1.2~1.4 15~30 Good
1.4~2.0 30~50 Poor
>2.0 >50 Fail
表2  粉体的可压缩性、流动性与HR值的关系[12]
图1  TiB2粉、NiCrCoAlY粉及两种粉末机械混合形貌图
图2  球磨各阶段粉末形貌图、球磨20 h单个颗粒剖面图及过筛后粉末形貌图
图3  球磨后单个团聚颗粒形貌及其局部放大图
图4  原始粉末、湿磨10 h及湿磨20 h粉末的XRD谱图
图5  球磨0、10、20 h的粒度分布
图6  不同球磨时间下粉末性能的变化
图7  NiCrCoAlY-TiB2粉末晶粒尺寸和微观应变分布图
[1] Berger L M.Application of hard metals as thermal spray coatings[J]. Int. J. Refract. Met. Hard Mater., 2015, 49: 350
[2] Wang B Q, Luer K.The erosion-oxidation behavior of HVOF Cr3C2-NiCr cermet coating[J]. Wear, 1994, 174(1): 177
[3] Houdková ?, Zahalka F, Ka?parová M, et al.Comparative study of thermally sprayed coatings under different types of wear conditions for hard chromium replacement[J]. Tribol. Lett., 2011, 43(2): 139
[4] Bjordal M, Bardal E, Rogne T, et al.Combined erosion and corrosion of thermal sprayed WC and CrC coatings[J]. Surf.Coat. Technol., 1995, 70(2): 215
[5] Horlock A J, McCartney D G, Shipway P H, et al. Thermally sprayed Ni(Cr)-TiB2 coatings using powder produced by self-propagating high temperature synthesis: microstructure and abrasive wear behavior[J]. Mater. Sci. Eng. A., 2002, 336(1): 88
[6] Jones M, Horlock A J, Shipway P H, et al.A comparison of the abrasive wear behavior of HVOF sprayed titanium carbide-and titanium boride-based cermet coatings[J]. Wear, 2001, 251(1): 1009
[7] Zhao H, Wang Q, Ding Z X, et al.Microstructural analysis of nanostructured WC-12Co coatings sprayedby HVOF[J]. Surface Technology, 2007, 36(4): 001
[7] (赵辉,王群,丁彰雄. HVOF喷涂纳米结构WC-12Co涂层的组织结构分析[J]. 表面技术, 2007, 36(4): 001)
[8] Kim B K, Ha G H, Lee G G, et al.Structure and properties of nanophase WC/Co/VC/TaC hardmetal[J]. Nanostructured Materials, 1997, 9(1): 233
[9] He J, Lavernia E J.Precipitation phenomenon in nanostructured Cr3C2-NiCr coatings[J]. Mater. Sci. Eng. A., 2001, 301(1): 69
[10] Sachan R, Park J W.Formation of nanodispersoids in Fe-Cr-Al/30% TiB2 composite system during mechanical alloying[J]. J. Alloys Compd., 2009, 485(1): 724
[11] Bruni G, Lettieri P, Newton D, et al.An investigation of the effect of the interparticle forces on the fluidization behavior of fine powders linked with rheological studies[J]. Chem. Eng. Technol., 2007, 62(1): 387
[12] Wu F Y.Study on flow properties of powders and characterization techniques [D]. Shanghai: East China University of Science and Technology, 2014
[12] (吴福玉,粉体流动特性及其表征方法研究[D]. 上海: 华东理工大学,2014)
[13] Abdullah E C, Geldart D.The use of bulk density measurements as flowability indicators[J]. Powder Technol., 1999, 102(2): 151
[14] Xiao J, Pan J, Liu X C.High energy ball milling and its application in the preparation of nanostructural magnetic materials[J]. Journal of Magnetic Materials and Devices, 2005, 01: 06
[14] (肖军, 潘晶, 刘新才. 高能球磨法及其在纳米晶磁性材料制备中的应用[J]. 磁性材料及器件, 2005, 01: 06)
[15] Dai L Y, Chen Q L, Lin S F, et al.Study on the main promotion factors of powder refinement in high-energy ball milling[J]. Materials Review, 2009, 23(11): 59
[15] (戴乐阳,陈清林,林少芬. 高能球磨中促进粉体细化的主要因素研究[J]. 材料导报, 2009, 23(11): 59)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.