Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (10): 759-762    DOI: 10.11901/1005.3093.2015.650
  研究论文 本期目录 | 过刊浏览 |
选择性激光烧结尼龙-12/聚苯乙烯复合材料*
周泽全,辛勇(),曹传亮
南昌大学机电工程学院 南昌 330031
Research of the Selective Laser Sintering of Nylon12 / Polystyrene Composite Powder
Zequan ZHOU,Yong XIN(),Chuanliang CAO
School of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China
引用本文:

周泽全,辛勇,曹传亮. 选择性激光烧结尼龙-12/聚苯乙烯复合材料*[J]. 材料研究学报, 2016, 30(10): 759-762.
Zequan ZHOU, Yong XIN, Chuanliang CAO. Research of the Selective Laser Sintering of Nylon12 / Polystyrene Composite Powder[J]. Chinese Journal of Materials Research, 2016, 30(10): 759-762.

全文: PDF(0 KB)   HTML
摘要: 

采用机械共混法制备不同成分的尼龙12(PA12)与聚苯乙烯(PS)复合粉末, 对其进行选择性激光烧结制备成形制件, 研究了PA12/PS复合粉末的成分对成形件的力学性能、尺寸精度及断口形貌的影响。结果表明: 当PS的质量分数超过40%时PA12/PS成形件的力学性能明显降低, 而当PS质量分数为20%时复合粉末烧结成形件的拉伸强度、断裂延伸率、弯曲强度以及弯曲模量比PA12烧结的成形件分别提高了7.08%、10.19%、6.51%和8.89%, 且各方向尺寸精度同比PA12也均有提高。

关键词 复合材料选择性激光烧结尼龙12聚苯乙烯机械共混法    
Abstract

The composite powders of nylon 12 (PA12) and polystyrene (PS) with different mass fraction were prepared by mechanical mixing method and then work pieces of the composite powders was prepared by selective laser sintering(SLS). The effect of the PA12 / PS ratio on the mechanical property, dimensional accuracy and fractured microcosmic morphologies of the sinteredwork pieces were investigated. The results show that when the mass fraction of PS exceeds 40% the mechanical properties of the sintered specimens decreased obviously and when mass fraction of PS is 20% the tensile strength, breaking elongation, flexural strength and flexural modulus are increased by 7.08%, 10.19%, 6.51% and 8.89%, respectively in comparison with the sintered specimens of PA12. And the dimensional accuracy was also increased.

Key wordscomposite    selective laser sintering    nylon12    polystyrene    mechanical mixing method
收稿日期: 2015-12-15     
基金资助:* 国家自然科学基金51365038、江西省科技支撑计划20122BBE500044和江西省高校科技落地计划KJLD12058资助项目
图1  正八边形模型
PA12/PS(w/w) 100/0 80/20 60/40 40/60 20/80 0/100
Tensile strength (MPa) 32.5 34.8 27.5 12.4 10.6 9.1
Elongation at break (%) 15.7 17.3 12.2 8.7 8.1 7.6
Flexural strength (MPa) 38.4 40.9 30.4 14.7 11.2 10.5
Flexure modulus (GPa) 1.35 1.47 1.21 0.97 0.91 0.88
表1  不同成分的PA12/PS粉末烧结试样的力学性能
图2  PA12、PS和不同成分PA12/PS拉伸试样的断面SEM照片
PA12/PS
(w/w)
x direction/(mm) y direction/(mm) w direction/(mm) p direction/(mm) z direction/(mm)
100/0 -0.59 -0.55 -0.52 -0.57 -0.68
80/20 -0.45 -0.47 -0.44 -0.43 -0.56
60/40 -0.39 -0.42 -0.41 -0.38 -0.43
40/60 -0.34 -0.32 -0.36 -0.34 -0.38
20/80 -0.29 -0.27 -0.29 -0.28 -0.17
0/100 -0.19 -0.16 -0.20 -0.17 0.05
表2  不同成分PA12/PS粉末烧结试样的尺寸精度
1 S. Kumar, Selective laser sintering: a qualitative and objective approach, JOM, 55(10), 43(2003)
2 J. P. Knuth, Material increase manufacturing by rapid prototyping technique, Annals of the CIPP, 40(2), 603(1999)
3 S. Upcraft, R. Fletcher, The rapid prototyping technologies, Assembly Automation, 23(4), 318(2003)
4 SHI Yusheng, YAN Chunze, WEI Qingsong, WEN Shifeng, ZHU Wei, Selective laser sintering of 3D printing with polymer composite materials, Science China Press, 45(2), 204(2015)
4 (史玉升, 闫春泽, 魏青松, 文世峰, 朱伟, 选择性激光烧结3D打印用高分子复合材料, 中国科学: 信息科学, 45(2), 204(2015))
5 G. V. Salmoria, L. J. Leite, R. A. Paggi, A. lago, A. T. N. Pires, Selective laser sintering of PA12/HDPE blends: Effect of components on elastic/plastic behavior, Polymer Testing, 27(6), 654(2008)
6 H. Zheng, H. Zhang, S. Lu, G. Wang, Z. Xu, Effect of core-shell composite particles on the sintering behavior and properties of nano-Al2O3/polystyrene composite prepared by SLS, Materials Letters, 60(9), 1219(2006)
7 S. R. Athreya, K. Kalaitzidou, S. Das, Mechanical and microstructural properties of Nylon-12/carbon black composites: Selective laser sintering versus melt compounding and injection molding, Composites Science and Technology, 71(4), 506(2011)
8 ZHANG Wenxian, YAN Chunze, SHI Yusheng, YANG Jinsong, Selective laser sintered specimens of polystyrene/polyamide-12 alloy, Polymer Materials Science and Engineering, 25(7), 108(2009)
8 (章文献, 闫春泽, 史玉升, 杨劲松, 聚苯乙烯/聚酰胺-12合金的选择性激光烧结成形, 高分子材料科学与工程, 25(7), 108(2009))
9 F. Ya, Viscous flow of crystallne bodies under the action of surface tension, Science of Sintering, 12(1), 7(1980)
10 I. Gibson, D. Shi, Material properties and fabrication parameters in selective laser sintering process, Rapid Prototyping Journal, 3(4), 129(1997)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.