Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (5): 336-342    DOI: 10.11901/1005.3093.2015.414
  本期目录 | 过刊浏览 |
交联聚苯乙烯/云母复合材料抗紫外老化性能研究
付红梅1, 朱光明1(), 刘文元2, 李琳2, 柯昌凤2, 陈昌华2
1. 西北工业大学应用化学系 西安 710129
2. 西北核技术研究所 西安 710024
Performance of Ultraviolet Aging Resistance of Cross-linked Polystyrene/Mica Composites
FU Hongmei1, ZHU Guangming1,*(), LIU Wenyuan2, LI Lin2, KE Changfeng2, CHEN Changhua2
1. Department of Applied Chemistry, Northwestern Polytechnical University, Xi’an 710129, China
2. Northwestern Institute of Nuclear Technology, Xi’an 710024, China
引用本文:

付红梅, 朱光明, 刘文元, 李琳, 柯昌凤, 陈昌华. 交联聚苯乙烯/云母复合材料抗紫外老化性能研究[J]. 材料研究学报, 2016, 30(5): 336-342.
Hongmei FU, Guangming ZHU, Wenyuan LIU, Lin LI, Changfeng KE, Changhua CHEN. Performance of Ultraviolet Aging Resistance of Cross-linked Polystyrene/Mica Composites[J]. Chinese Journal of Materials Research, 2016, 30(5): 336-342.

全文: PDF(886 KB)   HTML
摘要: 

通过紫外加速老化试验研究交联聚苯乙烯(CLPS)和CLPS/云母复合材料的抗紫外老化性能。从力学、分子结构及耐热性能等方面探讨云母对CLPS抗紫外老化性能的影响。结果表明, 随着辐照时间的延长, CLPS和CLPS/云母复合材料的拉伸强度、冲击强度和弯曲强度均呈下降趋势, CLPS/云母复合材料力学性能的保持率基本都高于CLPS, 并且云母含量越大力学性能保持率越高。与CLPS/云母复合材料相比, CLPS在紫外辐照18 d后红外谱图出现明显的C=O吸收峰。热重分析表明, 紫外老化后CLPS/云母复合材料的热稳定性能优于CLPS。研究结果证明掺杂云母对交联聚苯乙烯抗紫外老化性能有明显的提高。

关键词 复合材料交联聚苯乙烯云母抗紫外老化性能    
Abstract

The UV aging resistance of the cross-linked polystyrene(CLPS) and CLPS /mica composites were comparatively studied. The results showed that the tensile strength and impact strength of the CLPS and the CLPS/mica composites decreased with the increasing irradiation time, but the retention rate of the tensile strength and impact strength of the CLPS/mica composites were substantially higher than that of CLPS, the higher mica content, the higher retention ratio. Infrared analysis showed that the CLPS had significant C=O absorption peaks in IR spectrum after irradiation for 18 days. Thermal gravimetric analysis showed that the thermal property of the CLPS/mica were better than the pure CLPS after UV aging. It was proved that mica could improve UV aging properties of the cross-linked polystyrene.

Key wordscomposite    cross-linked polystyrene    mica    ultraviolet aging resistance
收稿日期: 2015-07-20     
ZTFLH:  TB332  
作者简介: 本文联系人: 朱光明, 教授
Tensile strength/MPa Impact strength / kJm-2 Flexutal strength/MPa Tensile modulus/MPa
CLPS 54 1.6 81 3266
CLPS/1%mica 52 1.8 77 3347
CLPS/3%mica 48 1.9 71 3780
CLPS/5%mica 42 1.6 68 4157
CLPS/7%mica 35 1.3 63 3842
CLPS/10%mica 26 1.1 59 3621
表1  CLPS和CLPS/云母复合材料力学性能数据表
图1  拉伸强度保持率与老化时间的关系
图2  冲击强度保持率与老化时间的关系
图3  弯曲强度保持率与老化时间的关系
图4  不同老化时间的红外谱图
图5  CLPS和CLPS/3%云母复合材料紫外可见光谱
图6  不同辐照时间紫外可见光谱
图7  不同老化时间的热重曲线
T99%/℃ T50%/℃ T5%/℃
CLPS 359.41 420.09 438.46
CLPS-6 d 299.61 417.48 438.19
CLPS-18 d 319.76 418.3 440.35
CLPS/3% mica 359.38 420.54 440.25
CLPS/3% mica-6 d 302.18 418.12 441.03
CLPS/3% mica-18 d 335.84 420.04 445.05
表2  不同紫外老化时间对CLPS和CLPS/云母复合材料热重性能的影响
图8  不同老化时间DSC曲线
1 C. Chang, M. Zhu, J. Verboncoeur, Enhanced window breakdown dynamics in a nanosecond microwave tail pulse, Applied Physics Letters, 104(25), 253504-1(2014)
2 C. H.Chen, C.Chang, W. Y.Liu, Improving the microwave window breakdown threshold by using a fluorinated, Journal of Applied Physics, 114, 163304-1(2013)
3 S. Li, C. Chang, J. G. Wang, Tracking multiple generation and suppression of secondary electrons on improving microwave power capacity, Physics of Plasmas, 20(12), 123502-1(2013)
4 G. Z. Liu, C. X. Tang, C. Chang, Review of recent theories and experiments for improving high-power microwave window breakdown thresholds, Physics of Plasmas, 18(5), 055702-1(2011)
5 WANG Jun, QI Li, PENG Jian, LI Lili, Weathering model and prediction of polystyrene color-difference under simulated indoor environment, Plastics, 34(3), 96(2005)
5 (王俊, 祁黎, 彭坚, 黎丽丽, 在模拟户内环境下聚苯乙烯颜色变化的老化模型及预估, 塑料, 34(3), 96(2005))
6 R. P. Singh, P. A. Vishwa, S. S. Solanky, The oxidative degradation of styrenic copolymers: a comparison of photoproducts formation under natural and accelerated conditions, Journal of Applied Polymer Science, 85, 1676(2002)
7 TANG Xiaodong, YE Guangdou, LI Shouqun, XU Jianjun, Synthesis and characterization of low dielectric crosslinked PS, China Plastic Industry, 3, 26(2007)
7 (唐晓东, 叶光斗, 李守群, 徐建军, 低介电常数的合成和表征, 塑料工业, 3, 26(2007))
8 LIU Hailin, WU Yujiao, YANG Chunping, CHEN Yuling, Study on the anti ultraviolet aging of polypropylene composites reinforced by mica, Guizhou Science, 32(6), 2989(2014)
8 (刘海林, 伍玉娇, 杨春萍, 陈雨玲, 云母增强聚丙烯复合材料抗紫外老化性能的研究, 贵州科学, 32(6), 2989(2014))
9 ZHOU Zhiming, Anti-ultraviolet ageing effect of modified montmorillonite on polypropylene, China Plastic, 14(11), 81(2000)
9 (邹志明, 改性蒙脱土对聚丙烯的抗紫外老化作用, 中国塑料, 14(11), 81(2000))
10 GUO Mingying, LI Haibin, ZHANG Hui, PAN Liang, Effect of UV aging on the properties and structures of aromid/epoxy composites, Fiber Composites, 3(1), 35(2008)
10 (郭明映, 李海斌, 张晖, 潘亮, 紫外老化对芳纶/环氧复合材料性能和结构的影响, 纤维复合材料, 3(1), 35(2008))
11 J. M. Park, J. W. Kong, D. S. Kim, Non-destructive damage sensing and cure monitoring of carbon fiber/epoxyacrylate composites with UV and thermal curing using electro-micromechanical techniques, Composites Science and Technology, 64(16), 2565(2004)
12 ZHOU Jian, YANG Qingqing, LI Ke, XU Yaping, Mechnicalproperties and UV aging resistances of polyamide 6/rare earth oxide composites, Engineering Plastic Application, 9(41), 101(2013)
12 (周健, 杨菁菁, 李珂, 徐亚平, PA6/稀土氧化物复合材料力学与抗紫外老化性能, 工程塑料应用, 9(41), 101(2013))
13 QIAO Kun, ZHU Bo, GAO Xueping, XIE Ben, YUAN Hua, WU Yimin, ZHANG Chunlei, Influence of artificial accelerating UV aging on carbon fiber reinforced epoxy composite, Fuctional Materials, 21, 43(2012)
13 (乔琨, 朱波, 高学平, 谢奔, 袁华, 吴益民, 张春雷, 紫外老化对碳纤维增强环氧树脂复合材料的性能研究, 功能材料, 21, 43(2012))
14 L. Rosu, C. Ciobanu, C. Ciobanu, D. Rosu, E. D. Lon, Effect of UV radiation on the semi-interpenetrating polymer networks-based on polyurethane and epoxy maleate of bisphenola, Journal of Photochemistry and Photobiology A: Chemistry, 169(2), 177(2005)
15 A. R. Sousa, K. L. E.Amorim, E. S. Medeiros, T. J. A.Melo, M. S.Rabello, The combined effect of photodegradation and stress cracking in polystyrene, Polymer Degradation and Stability, 91(7), 1504(2006)
16 F. Awaja, P. J. Pigram, Surface molecular characterization of different epoxy resin composites subjected to UV accelerated degradation using XPS and ToF-SIMS, Polymer Degradation and Stability, 94(4), 65(2009)
17 S. C. W.Ricky, Y. H. Chen, H. G. Zhu, Environmental degradation of epoxy-organoclaynanocomposites duo to UV exposure: part Ⅱresidual mechanical properties, Composites Science and Technology, 68(9), 2149(2008)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.