Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (10): 744-750    DOI: 10.11901/1005.3093.2014.591
  本期目录 | 过刊浏览 |
增强颗粒与基体适配性对颗粒增强铝基复合材料强化机理的影响
向兆兵,聂俊辉,魏少华,左涛,马自力,樊建中()
北京有色金属研究总院 北京 100088
Effects of Particle-matrix Matching on Strengthening Mechanism of Particle Reinforced Al Matrix Composites
Zhaobing XIANG,Junhui NIE,Shaohua WEI,Tao ZUO,Zili MA,Jianzhong FAN()
General Research Institute for Nonferrous Metals, Beijing 100088, China
引用本文:

向兆兵,聂俊辉,魏少华,左涛,马自力,樊建中. 增强颗粒与基体适配性对颗粒增强铝基复合材料强化机理的影响[J]. 材料研究学报, 2015, 29(10): 744-750.
Zhaobing XIANG, Junhui NIE, Shaohua WEI, Tao ZUO, Zili MA, Jianzhong FAN. Effects of Particle-matrix Matching on Strengthening Mechanism of Particle Reinforced Al Matrix Composites[J]. Chinese Journal of Materials Research, 2015, 29(10): 744-750.

全文: PDF(3488 KB)   HTML
摘要: 

用粉末冶金法制备了分别用Al2O3、SiC颗粒增强的颗粒体积分数为25%的6061Al基复合材料, 在不同温度对其进行固溶-时效热处理, 通过拉伸曲线分析和断口SEM分析研究了增强颗粒与基体适配性对颗粒增强铝基复合材料拉伸性能的影响。结果表明, 低强度Al2O3颗粒不适合用于增强高强度的6061Al基体; 研究了增强颗粒与基体适配性对颗粒增强铝基复合材料强化机制的影响, 发现主要通过影响应力传递机制来影响复合材料性能; 揭示了适配性与增强颗粒开裂、复合材料屈服之间的关系, 得出增强颗粒相对于基体强度越高, 颗粒开裂越少, 并总结了一种表示增强颗粒与基体适配性关系的方法。

关键词 复合材料颗粒增强铝基复合材料适配性强化机理拉伸性能    
Abstract

Al-based composites of 25% SiCp/6061Al and 25% Al2O3/6061Al were fabricated by powder metallurgy method, and then suffered from different solution-aging treatments to ensure the composites with desired strength. The effect of particle-matrix compatibility on the tensile property of the composites was investigated by tensile test and SEM observation. Results show that the low strength Al2O3 particles were not suitable to strengthening the high strength 6061Al matrix. The effect of particle-matrix compatibility on strengthening mechanism was discussed, and it is believed that the particle-matrix compatibility affects the composite property through the stress transfer mechanism. The relationships between particle-matrix compatibility with the particle fracture and composites yielding were revealed, It is obtained that particle cracking decreased as particle strength increase, and finally an expression to represent the particle-matrix compatibility was summed up.

Key wordscomposites    particle reinforced aluminum matrix composite    particle-matrix matching    strengthening mechanism    tensile property
收稿日期: 2014-10-16     
基金资助:* 国家高技术研究发展计划2013AA031201和国家重点基础发展计划2012CB619606资助项目。
Mg Si Cu Mn Cr Ti Zn Fe Al
6061Al 0.8-1.2 0.4-0.8 0.15-0.4 0.15 0.04-0.35 0.15 0.25 0.7 Bal.
表1  6061Al合金的化学成分
图1  25%SiCp/6061Al、25%Al2O3/6061Al复合材料的金相组织
图2  未热处理的复合材料的拉伸曲线和应力比变化
图3  不同固溶温度热处理后复合材料的拉伸曲线
图4  热处理前后复合材料的拉伸断口形貌
图5  在535℃固溶热处理的复合材料的拉伸曲线和应力比变化
1 WANG Ying,LIU Xiangdong, Present status and development trend of SiCp/Al composite, Research Studies on Foundry Equipment, 3, 18(2003)
1 (王 莹, 刘向东, 碳化硅颗粒增强铝基复合材料的现状及发展趋势, 铸造设备研究, 3, 18(2003))
2 JIN Peng,LIU Yue, LI Shu, XIAO Bolv, Effects of particle size on tensile property and fracture behavior on particle reinforced metal matrix composites, Chinese Journal of Material Research, 23(2), 211(2009)
2 (金 鹏, 刘 越, 李 曙, 肖伯律, 碳化硅增强铝基复合材料的力学性能和断裂机制, 材料研究学报, 23(2), 211(2009))
3 FAN Jianzhong,SHI Likai, Development and application of particle reinforced aluminum matrix composites, Aerospace Materials and Technology, 1, 1(2012)
3 (樊建中, 石力开, 颗粒增强铝基复合材料研究与应用发展, 宇航材料工艺, 1, 1(2012))
4 CONG Hongtao,ZHONG Rong, CHENG Huiming, LU Ke, Reinforcing effects of SWNTs associated with nano-Al base, Chinese Journal of Material Research, 17(2), 132(2003)
4 (丛洪涛, 钟 蓉, 成会明, 卢 柯, 单壁纳米碳管/纳米铝基复合材料的增强效果, 材料研究学报, 17(2), 132(2003))
5 LI Xia,CHEN Kanghua, HUANG Dawei, Influence of reinforced particle on strength of particle-reinforced Aluminum matrix composites, Aluminium Fabracation, 2, 9(2006)
5 (李 侠, 陈康华, 黄大为, 增强颗粒对颗粒增强铝基复合材料强度的影响, 铝加工, 2, 9(2006))
6 L. Loyd,Particle reinforced aluminum and magnesium matrix composites, International Materials Review, 39(1), 1(1994)
7 S. G. Song, N. Shi, G. T. Gray,Reinforcement shape effects on the fracture behavior and ductility of particulate-reinforced 6061-Al matrix composites, Metallurgical and Materials Transaction A, 27, 3739(1996)
8 XU Na,ZONG Yaping, ZHANG Fang, ZUO Liang, Simulation of stress in reinforcements and stress-strain curve of SiCp/Al-2618 matrix composite , Acta Metall Sinica, 43(8), 863(2007)
8 (徐 娜, 宗亚平, 张 芳, 左 良, SiCp/Al-2618复合材料的应力-应变曲线和增强颗粒受力的模拟, 金属学报, 43(8), 863(2007))
9 X. L. Gao,Analytical solution for the stress field around a hard spherical particle in a metal matrix composite incorporating size and finite volume effects, Mathematics and Mechanics of Solids, 13, 357(2008)
10 Eun U. Lee,Thermal stress and strain in a metal matrix composite with a spherical reinforcement particle, Metallurgical Transactions A, 23A, 2205(1992)
11 G. I. Taylor,Plastic strain in metal, J. Inst. Metals., 62, 307(1938)
12 F. Zhang, Y. Huang, K. C. Hwang, S. Qu, C. Liu,A three-dimensional strain gradient plasticity analysis of particle size effect in composite materials, Materials and Manufacturing Processes, 22, 140(2007)
13 H. Mojia, Z. Wennan, Q. S. Zheng,Explicit expression of Eshelby tensor for arbitrary weakly non-circular inclusion in two-dimensional elasticity, International Journal of Engineering Science, 47, 1240(2009)
14 A. Abedini, Z. T. Chen,A micromechanical model of particle-reinforced metal matrix composites considering particle size and damage, Computational Materials Science, 85, 200(2014)
[1] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[2] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊, 徐翩. MnMg-Y-Cu合金的组织和性能的影响[J]. 材料研究学报, 2023, 37(5): 362-370.
[9] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[10] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[11] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.