Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (4): 241-247    DOI: 10.11901/1005.3093.2015.507
Orginal Article Current Issue | Archive | Adv Search |
Oxygen-concentration Cell Induced Corrosion of E690 Steel for Ocean Platform
XING Pei1, LU Lin1,**(), LI Xiaogang1,2
1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2. Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Cite this article: 

XING Pei, LU Lin, LI Xiaogang. Oxygen-concentration Cell Induced Corrosion of E690 Steel for Ocean Platform. Chinese Journal of Materials Research, 2016, 30(4): 241-247.

Download:  HTML  PDF(6614KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to investigate the corrosion resistance of ocean platform steel E690 in sea water, the corrosion induced by oxygen-concentration cell of E690 steel in 3.5%NaCl with oxygen concentration within a range of 0.3 to 8 mg/L was investigated by means of electrochemical measurement techniques, scanning electron microscopy and Raman spectroscopy. The influence of the difference in dissolved oxygen, the ratio of cathode area to anode area and the corrosion product on the corrosion behavior of E690 steel was examined respectively. It was found that: when the ratio of cathode area to anode area was less than four (Sc/a≤4), the cathode and these ratios would be the main factor that influenced the oxygen-concentration cell corrosion; when Sc/a>4, the dissolved oxygen would be the main factor that influenced the oxygen-concentration cell corrosion; How the corrosion product influenced the oxygen-concentration cell corrosion depends on the dissloved oxygen. When the rusted metal under an oxygen-deficient condition, the rust layer would prevent the substrate from corrosion; when the rusted metal was immersed in an aerated condition, the corrosion product would participate in the cathodic reaction process, which would accelerate the anode dissolution and resulted in localized corrosion, such as pitting.

Key words:  materials failure and protection      E690 steel      oxygen concentration cell      area ration between cathode and anode      rust layer      Raman spectroscopy     
Received:  14 September 2015     
ZTFLH:  TG172.4  
Fund: Supported by National Basic Research Program of China No.2014CB643300 and National Environmental Corrosion Platform (NECP)
About author:  To whom correspondence should be addressed, Tel: (010)62333931, E-mail: lulin315@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.507     OR     https://www.cjmr.org/EN/Y2016/V30/I4/241

C Si Mn P S Alt V Cr Ni Cu Mo B Ti
0.095 0.21 1.47 0.009 0.0012 0.0236 0.033 0.45 0.32 0.31 0.46 0.0018 0.015
Table 1  Chemical composition of experimental steels (%, mass fraction)
Fig.1  The equipment of oxygen concentration corrosion cell simulation (1-salt bridge, 2-organic glass cylinder, 3-sealing plastics, 4-saturated calomel electrode, 5-3.5%NaCl, 6-E690 steel)
Fig.2  Microstructure of E690 steels
Fig.3  Potentiodynamic polarization curves of E690 in 3.5%NaCl with different DO (dissolved oxygen) concentration (20℃)
DO/(mg/L) Ecorr/VSCE Icorr/Acm-2 Ba/(V/dec) Bc/(V/dec)
0.3 -0.825 5.04×10-7 0.0319 -0.3803
1 -0.770 2×10-6 0.0473 -0.2894
2 -0.768 2.65×10-6 0.1017 -0.2327
3 -0.752 3.08×10-6 0.1100 -0.2064
6 -0.510 8.61×10-6 0.1002 -0.1428
8 -0.462 9.19×10-6 0.0828 -0.0990
Table 2  Parameters of potentiodynamic polarization curves of E690 in 3.5%NaCl
DO in the two
containers
Oxygen concentration
difference
OCP difference
0.3-2 mg/L 1.7 mg/L 54 mV
2-6 mg/L 4 mg/L 95 mV
0.3-6 mg/L 5.7 mg/L 149 mV
0.3-8 mg/L 7.7 mg/L 170 mV
Table 3  Parameters of the oxygen concentration corrosion cells
Fig.4  Influence of area ratio on oxygen concentration corrosion
DO/(mg/L) OCP/V
Rusted sample Unrusted sample
0.3 -0.698 -0.741
6.0 -0.656 -0.556
Table 4  OCP in 3.5%NaCl solution with different dissolved oxygen
The cathode and anode are
respectively in each solution
The cathode and anode are in the same solution
Group one Group two Group three
Anode Fresh steel
(solution with
0.3 mg/L DO)
Rusty metal
(solution with
0.3 mg/L DO)
Rusty metal
(solution with 6.0 mg/L DO)
Cathode Rysty metal
(solution with
6.0 mg/L DO)
Fresh steel
(solution with
6.0 mg/L DO)
Fresh steel
(solution with 6.0 mg/L DO)
Table 5  Setting of the three oxygen concentration corrosion cells
Fig.5  Corrosion current-time curves of the oxygen concentration corrosion cell, (a) the first group, (b) the second group, (c) the third group
Fig.6  Corrosion morphology of the anode surface with rust layer (a, c, e) and without rust layer (b, d, f), (a, b) the first group, (c, d) the second group, (e, f) the third group
Fig.7  Raman spectra of the corrosion rusty layer, (a) E690 after potentiostatically anodic polarization, (b) corrosion products on the cathode surface of the first group of oxygen concentration corrosion cell, (c) prefabricated rust layer sample after immersed in solution with full dissolved oxygen
Raman peak frequencies of corrosion products / cm-1 Raman peak frequencies
of standard rust phase / cm-1
Corrosion products
Corrosion products made
by polarization
218, 286, 489, 225, 245, 295, 415, 500, 615, α-Fe2O3
328, 406 330, 415, 745 β-FeOOH
Corrosion products on the cathode surface of the oxygenconcentration
corrosion cell
319, 680 298, 319, 420, 560, 680, 1322 Fe3O4
Corrosion products after immersed in solution 265, 345, 386, 265, 300, 345, 395, 515, 645, 670, 715, γ-Fe2O3
485, 680 248, 303, 397, 485, 554, 680, 1002 α-FeOOH
Table 6  Raman peak frequencies of corrosion products and standard rust phase
1 CAO Chunan, The Corrosion of Materials under the Natural Environment in China (Beijing, Chemical Industry Press, 2005)
(曹楚南, 中国材料的自然环境腐蚀 (北京, 化学工业出版社, 2005))
2 LIU Yan, WU Yuanhui, LUO Suxing, Macrocell corrosion of Q235 steel in polluted soils due to the difference of oxygen concentration, Corrosion and Protection, 29(8), 438(2008)
(刘焱, 伍远辉, 罗宿星, Q235钢在污染土壤中的氧浓差宏电池研究, 腐蚀与防护, 29(8), 438(2008))
3 HAO Hongna, LI Zili, WANG Taiyuan, Macro-cell corrosion of X70 steel between salinized soil and seawater, Corrosion and Protection, 33(4), 273(2012)
(郝宏娜, 李自力, 王太源, X70钢的滨海盐渍土-海水宏电池腐蚀, 腐蚀与防护, 33(4), 273(2012))
4 Š.Msallamová, P.Novák, M. Kouril, J.Stoulil, The differential aeration cell and the corrosion paradox, Materials and Corrosion, 66(5), 498(2015)
doi: 10.1002/maco.201307446
5 XIE Jianhui, HE Jiquan, WU Yinshun, Investigation on oxygen concentration difference macrocell corrosion for steel A3, Journal of University of Science and Technology Beijing, 16(S1), 59(1994)
(谢建辉, 何积铨, 吴荫顺, A3钢的氧浓差宏电池腐蚀作用的研究, 北京科技大学学报, 16(S1), 59(1994))
6 ZHENG Liyun, CAO Fahe, LIU Wenjuan, Corrosion behavior of Q235 in simulated natural environment by electrochemical technology, Equipment Environment Engineering, 8(4), 8(2011)
(郑利云, 曹发和, 刘文娟, Q235钢在模拟自然环境下失效行为的电化学分析, 装备环境工程, 8(4), 8(2011))
7 M. L. A Grace, C. Y. Hoo, O. M. M. Silva, N. J. Lourenço, Failure analysis of a 300M steel pressure vessel, Eng. Failure Anal., 16(1), 182(2009)
doi: 10.1016/j.engfailanal.2008.02.003
8 Y. T. Ma, Y. Li, F. H. Wang, Corrosion of low carbon steel in atm ospheric environments of different chloride content, Corrosion Science, 51(5), 997(2009)
doi: 10.1016/j.corsci.2009.02.009
9 P. Refait, J. B. Mement, C. Bon, R. Sabot, J. M. Genin, Formation of the Fe(II)-Fe(III) hydroxysulphate green rust during marine corrosion of steel, Corrosion Science, 45(4), 833(2003)
doi: 10.1016/S0010-938X(02)00184-1
10 M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, T. Misawa, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century, Corrosion Science, 36(2), 283(1994)
11 S. Hoerle, F. Mazaudier, Ph. Dillmann, G.Santarini, Advances in understanding atmospheric corrosion of iron II. Mechanistic modelling of wet-dry cycles, Corrosion Science, 46(6), 1431(2004)
doi: 10.1016/j.corsci.2003.09.028
12 H. Antony, S. Perrin, Ph. Dillmann, L. Legrand, A. Chausse, Electrochemical study of indoor atmospheric corrosion layers fromed on ancient iron artefacts, Electrochimica Acta, 52(27), 7754(2007)
doi: 10.1016/j.electacta.2007.04.029
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[8] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[9] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[10] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[11] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[12] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[13] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[14] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[15] Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. 材料研究学报, 2019, 33(6): 401-408.
No Suggested Reading articles found!