Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (12): 904-912    DOI: 10.11901/1005.3093.2015.12.904
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Anticorrosion Performance of Polyaniline/Vermiculite Modified Waterborne Epoxy Coatings
Na WANG1,2,**(),Lidong HU1,Miao SUN1,Jing ZHANG1,Hang WU3,Fuhui WANG3
1. School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2. School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
3. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Na WANG,Lidong HU,Miao SUN,Jing ZHANG,Hang WU,Fuhui WANG. Preparation and Anticorrosion Performance of Polyaniline/Vermiculite Modified Waterborne Epoxy Coatings. Chinese Journal of Materials Research, 2015, 29(12): 904-912.

Download:  HTML  PDF(1978KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The waterborne epoxy coatings with polyaniline/vermiculite (PANI/VMT) as pigment were prepared. For the sake of identifying the functional groups of PANI/VMT, FT-IR measurement was performed. The thermal behavior of the pigments was characterized by thermal gravimetric analysis (TGA). The anticorrosion performance of waterborne epoxy coatings with different mass ratio of PANI/VMT was evaluated by electrochemical impedance spectroscopy (EIS) and salt spray test. The results show that a proper combination of the anodic protection ability of polyaniline and barrier property of vermiculite results in better performance of the PANI/VMT modified waterborne epoxy coating, for example, a coating with addition of 0.5% of PANI/VMT could provide a long-lasting anticorrosion protection for steel substrate.

Key words:  materials failure and protection      waterborne epoxy resin      polyaniline      vermiculite      anticorrosion coatings     
Received:  13 January 2015     
Fund: *Supported by Natural Science Foundation of Liaoning Province of China No.2015021016, International Cooperation Program of Science and Technology Bureau of Shenyang, China No.F15-200-6-01

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.12.904     OR     https://www.cjmr.org/EN/Y2015/V29/I12/904

Fig.1  FT-IR spectra of VMT (a), PANI (b) and PANI/VMT (c)
Fig.2  TGA curves for determining mass loss of VMT (a) and PANI/VMT (b)
Fig.3  EIS spectra for EP varnish coating immersed in 3.5% NaCl solution after 1440 h ((a) Nyquist plot, (b) Bode magnitude plot and (c) Bode phase angle plot)
Fig.4  EIS spectra for EP/[PANI/VMT-0.3%] coating immersed in 3.5% NaCl solution after 1440 h ((a) Nyquist plot, (b) Bode magnitude plot and (c) Bode phase angle plot)
Fig.5  EIS spectra for EP/[PANI/VMT-0.5%] coating immersed in 3.5% NaCl solution after 1440 h ((a) Nyquist plot, (b) Bode magnitude plot and (c) Bode phase angle plot)
Fig.6  EIS spectra for EP/[PANI/VMT-0.7%] coating immersed in 3.5% NaCl solution after 1440 h ((a) Nyquist plot, (b) Bode magnitude plot and (c) Bode phase angle plot)
Fig.7  EIS spectra for EP/[PANI/VMT-1.0%] coating immersed in 3.5% NaCl solution after 1440 h ((a) Nyquist plot, (b) Bode magnitude plot and (c) Bode phase angle plot)
Fig.8  |Z|0.1 variations curves of EP varnish, EP/[VMT-0.5%], EP/[PANI-0.5%] and EP/[PANI/VMT-0.5%] coatings with immersion time of 1440 h
Specimen a b c d e
Corrp(V) -1.08 -0.28 -0.26 -0.27 -0.35
Corrv(mm/a) 142.72 7.85×10-5 2.10×10-5 2.35×10-5 2.34×10-4
Table 1  Corrosion potentials and corrosion rates of coating specimens
Fig.9  Tafel plots for (a) EP varnish, (b) EP/[PANI/VMT-0.3%], (c) EP/[PANI/VMT-0.5%], (d) EP/[PANI/VMT-0.7%] and (e) EP/[PANI/VMT-1.0%] coatings measured in 3.5% NaCl solution
Fig.10  Simulation of anticorrosion mechanism for PANI/VMT modified waterborne epoxy coating
Fig.11  Photographs of (a) EP varnish, (b) EP/[VMT-0.5%], (c) EP/[PANI-0.5%], (d) EP/[PANI/VMT-0.3%], (e) EP/[PANI/VMT-0.5%], (f) EP/[PANI/VMT-0.7%], (g) EP/[PANI/VMT-1.0%] coatings after exposure in salt spray of 5% NaCl solution for 600 h
1 X. Yang, T. Zhang, H. Wang, B. Hou, A new solvent-free super high build epoxy coating evaluated by marine corrosion simulation apparatus, Materials and Corrosion, 63(4), 328(2012)
2 J. Hu, H. Zhu, Y. Ma, T. Yi, X. Mao, A. Lin, F. Gan, Corrosion protection of stainless steel by separate polypyrrole electrode in acid solutions, Materials and Corrosion, 62(1), 68(2011)
3 Z. Y. Wang, E. H. Han, F. C. Liu, Z. H. Qian, L. W. Zhu, Waterborne epoxy nanocoatings modified by nanoemulsions and nanoparticles, Journal of Materials Science and Technology, 30(10), 1036(2014)
4 N. Wang, K. Q. Cheng, H. Wu, C. Wang, Q. C. Wang, F. H. Wang, Effect of nano-sized mesoporous silica MCM-41 and MMT on corrosion properties of epoxy coating, Progress in Organic Coatings, 75(4), 386(2012)
5 G. Ruhi, H. Bhandari, S.K. Dhawan, Designing of corrosion resistant epoxy coatings embedded with polypyrrole/SiO2 composite, Progress in Organic Coatings, 77(9), 1484(2014)
6 M. Behzadnasb, S.M. Mirabedini, K. Kabiri, S. Jamali, Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution, Corrosion Science, 53(1), 89(2011)
7 S. K. Dhoke, A. S. Khanna, T. Jai Mangal Sinha, Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings, Progress in Organic Coatings, 64(4), 371(2009)
8 LIU Mingming, LIU Fuchun, HAN Enhou, TANG Nan, WAN Junbiao, DENG Jingwei, Influence of nano-CaCO3 concentrates on corrosion resistance of the epoxy coatings, Chinese Journal of Materials Research, 27(4), 425(2013)
8 (刘明明, 刘福春, 韩恩厚, 唐囡, 万军彪, 邓静伟, 纳米碳酸钙浓缩浆对环氧涂层耐蚀性的影响, 材料研究学报, 27(4), 425(2013))
9 S. K. Dhoke, A. S. Khanna, Electrochemical impedance spectroscopy (EIS) study of nano-alumina modified alkyd based waterborne coatings, Progress in Organic Coatings, 74(1), 92(2012)
10 L. Wang, Z.Y. Chen, X. Wang, S.Y. Yan, J.H. Wang, Y.W. Fan, Preparations of organo-vermiculite with large interlayer space by hot solution and ball milling methods: A comparative study, Applied Clay Science, 51(1-2), 151(2011)
11 M. Kehal, L. Reinert, L. Duclaux, Characterization and boron adsorption capacity of vermiculite modified by thermal shock or H2O2 reaction and/or sonication, Applied Clay Science, 48(4), 561(2010)
12 Y. El Mouzdahir, A. Elmchaouri, R. Mahboub, A. Gil, S.A. Korili, Synthesis of nano-layered vermiculite of low density by thermal treatment, Powder Technology, 189(1), 2(2009)
13 J. R. Hoyes, S. Bond, Gaskets for sealing solid oxide fuel cells, Sealing Technology, 2007(8), 11(2007)
14 M. Shinozaki, T.W. Clyne, The effect of vermiculite on the degradation and spallation of plasma sprayed thermal barrier coatings, Surface and Coatings Technology, 216, 172(2013)
15 X. G. Yang, B. Li, H. Z. Wang, B. R. Hou, Anticorrosion performance of polyaniline nanostructures on mild steel, Progress in Organic Coatings, 69(3), 267(2010)
16 C. H. Chang, T. C. Huang, C. W. Peng, T. C. Yeh, H. I. Lu, W. I. Hung, C. J. Weng, T. I. Yang, J. M. Yeh, Novel anticorrosion coatings prepared from polyaniline/graphene composites, Carbon, 50(14), 5044(2012)
17 L. G. Ecco, M. Fedela, A. Ahniyaz, F. Deflorian, Influence of polyaniline and cerium oxide nanoparticles on the corrosion protection properties of alkyd coating, Progress in Organic Coatings, 77(12), 2031(2014)
18 A. N. Nguyen, L. Reinert, J.-M. Lévêque, A. Beziat, P. Dehaudt, J.-F. Juliaa, L. Duclaux, Preparation and characterization of micron and submicron-sized vermiculite powders by ultrasonic irradiation, Applied Clay Science, 72, 9(2013)
19 S. Sathiyanarayanan, S. Syed Azim, G. Venkatachari, A new corrosion protection coating with polyaniline-TiO2 composite for steel, Electrochimica Acta, 52(5), 2068(2007)
20 N. Wang, Y. H. Wu, K. Q. Cheng, J. Zhang, Investigation on anticorrosion performance of polyaniline-mesoporous MCM-41 composites in new water-based epoxy coating, Materials and Corrosion, 65(10), 968(2014)
21 E. Huttunen-Saarivirta, V. E. Yudin, L. A. Myagkova, V. M. Svetlichnyi, Corrosion protection of galvanized steel by polyimide coatings: EIS and SEM investigations, Progress in Organic Coatings, 72(3), 269(2011)
22 Y. Chen, X. H. Wang, J. Li, J.L. Lu, F. S. Wang, Polyaniline for corrosion prevention of mild steel coupled with copper, Electrochimica Acta, 52(17), 5392(2007)
23 M. X. Huang, J. L. Yang, Salt spray and EIS studies on HDI microcapsule-based self-healing anticorrosive coatings, Progress in Organic Coatings, 77(1), 168(2014)
24 WANG Na, CHENG Keqi, WU Hang, WANG Fuhui, Preparation and anti-corrosion properties of conductive polyaniline/waterborne epoxy resin coatings, Chinese Journal of Materials Research, 27(4), 432(2013)
24 (王娜, 程克奇, 吴航, 王福会, 导电聚苯胺/水性环氧树脂防腐涂料的制备及防腐性能, 材料研究学报, 27(4), 432(2013))
25 LIU Shinian, WANG Cheng, FAN Shengping, LU Guohua, WANG Fuhui, Preparation and anticorrosion performance of conductive epoxy resin based composite coatings, Chinese Journal of Materials Research, 28(11), 835(2014)
25 (刘世念, 王成, 范圣平, 卢国华, 王福会, 环氧树脂基导电复合涂层的制备及防腐蚀性能, 材料研究学报, 28(11), 835(2014))
26 A. Mostafaei, F. Nasirpouri.Epoxy/polyaniline-ZnO nanorods hybrid nanocomposite coatings: Synthesis, characterization and corrosion protection performance of conducting paints, Progress in Organic Coatings, 77(1), 146(2014)
27 Y. F. Zhu, J. P. Xiong, Y. M. Tang, Y. Zuo, EIS study on failure process of two polyurethane composite coatings, Progress in Organic Coatings, 69(1), 7(2010)
28 LIU Mingming, YIN Guilai, LIU Fuchun, TANG Nan, HAN Enhou, WAN Junbiao, DENG Jingwei, Preparation of montmorillonite by two-step intercalation and its effect on the corrosion resistance of epoxy coatings, Chinese Journal of Materials Research, 28(9), 668(2014)
28 (刘明明, 尹桂来, 刘福春, 唐囡, 韩恩厚, 万军彪, 邓静伟, 二次插层蒙脱土的制备及其对环氧涂层耐蚀性的影响, 材料研究学报, 28(9), 668(2014))
29 LIANG Yongchun, ZHAN Shuyan, NIE Ming, LIU Fuchun, LIN Jiedong, HAN Enhou, Investigation of corrosion resistance of epoxy coatings modified with zirconium nanoparticles, Chinese Journal of Materials Research, 27(2), 189(2013)
29 (梁永纯, 赵书彦, 聂铭, 刘福春, 林介东, 韩恩厚, 纳米Zr粒子改性环氧涂层的耐腐蚀性能, 材料研究学报, 27(2), 189(2013))
30 X. M. Shi, T. A. Nguyen, Z. Y. Suo, Y. J. Liu, R. Avci, Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating, Surface and Coatings Technology, 204(3), 237(2009)
31 S. Takahashi, H. A. Goldberg, C. A. Feeney, D. P. Karim, M. Farrell, K. O'Leary, D. R. Paul, Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings, Polymer, 47(9), 3083(2006)
32 Y. Q. Qian, W. H. Liu, Y. T. Park, C. I. Lindsay, R. Camargo, C. W. Macosko, A. Stein, Modification with tertiary amine catalysts improves vermiculite dispersion in polyurethane via in situ intercalative polymerization, Polymer, 53(22), 5060(2012)
33 A. Olad, A. Rashidzadeh, Preparation and anticorrosive properties of PANI/Na-MMT and PANI/O-MMT nanocomposites, Progress in Organic Coatings, 62(3), 293(2008)
34 WANG Donghong, LIU Liwen, Study on the anticorrosion property and the use of polyaniline, China Coatings, 26(10), 10(2011)
34 (王东红, 刘利文, 聚苯胺防腐性能及应用研究, 中国涂料, 26(10), 10(2011))
35 A. Olad, M. Barati, S. Behboudi, Preparation of PANI/epoxy/Zn nanocomposite using Zn nanoparticles and epoxy resin as additives and investigation of its corrosion protection behavior on iron, Progress in Organic Coatings, 74(1), 221(2012)
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] YIN Jie, HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties[J]. 材料研究学报, 2022, 36(4): 314-320.
[4] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] YANG Xiaogang, CUI Shihong, LI Bin, WANG Chuanjie, HAN Jiejia. Preparation and Corrosion Resistance of Graphene/Acetic Acid Doped Polyaniline[J]. 材料研究学报, 2021, 35(5): 357-363.
[7] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[12] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[13] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[14] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[15] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
No Suggested Reading articles found!