Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (1): 103-107    
  研究论文 本期目录 | 过刊浏览 |
反应烧结多孔碳化硅的高温氧化行为
郑传伟; 杨振明; 张劲松
中国科学院金属研究所 沈阳 110016
The High Temperature Oxidation Behavior of Reaction–bonded Porous Silicon Carbide Ceramics
ZHENG Chuanwei; YANG Zhenming; ZHANG Jinsong
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

郑传伟 杨振明 张劲松. 反应烧结多孔碳化硅的高温氧化行为[J]. 材料研究学报, 2010, 24(1): 103-107.
, , . The High Temperature Oxidation Behavior of Reaction–bonded Porous Silicon Carbide Ceramics[J]. Chin J Mater Res, 2010, 24(1): 103-107.

全文: PDF(941 KB)  
摘要: 

研究了反应烧结多孔碳化硅(RPSC)陶瓷在1200--1500℃干燥氧气中的氧化行为。 结果表明, 与碳化硅致密块的高温氧化行为不同, 温度越高, RPSC的氧化增重越小; RPSC的整个氧化过程分为氧化初期的快速增重阶段和缓慢氧化的平台阶段, 氧化动力学曲线符合渐近线规律。 RPSC的高温氧化在外表面和孔隙内同时发生, 孔隙内的氧化占主导地位, 最大氧化增重与孔隙率成线性关系。当孔内氧化速率高于氧气向孔内的传输速率时, 氧化主要发生在孔口附近, 氧化硅很快将孔封闭, 阻止了孔内继续氧化。

关键词 无机非金属材料 热氧化 反应烧结多孔碳化硅 孔隙率 动力学    
Abstract

The oxidation behavior of reaction–bonded porous silicon carbide (RPSC) ceramics with different open porosities was studied in dry oxygen between 1200 and 1500oC. RPSC ceramics exhibited a rapid mass increase in the initial stage of oxidation and a slow mass increase in the following oxidation. This oxidation behavior of RPSC is more plausible to be represented by an asymptotic law rather than the parabolic law for dense SiC. The porosity of RPSC led to dominant internal oxidation mass gain in pore channels at the beginning of oxidation besides surface oxidation. The oxidation mass gain was proportional to the amount of the porosity. As the oxide growth rate near the pore mouth was much faster than the rate of oxygen supply to the interior of the pores, the pores were blocked by silica rapidly, which subsequently prevented the further oxidation of the inner pores.

Key wordsinorganic non–metallic materials    thermal oxidation    reaction–bonded porous SiC    porosity    kinetics
收稿日期: 2009-09-07     

1 R.J.Ciora, B.Fayyaz, P.K.T.Liu, V.Suwanmethanond, R.Mallada, M.Sahimi, T.T.Tsotsis, Preparation and reactive applications of nanoporous silicon carbide membranes, Chemical Engineering Science, 59(22–23), 4957(2004)
2 E.Passalacqua, S.Freni, F.Barone, Alkali resistance of tape–cast SiC porous ceramic membranes, Materials Letters, 34(3–6), 257(1998)
3 ZHU Xinwen, JIANG Dongliang, TAN Shouhong, Preparation of silicon carbide reticulated porous ceramics, Materials Science and Engineering A, 323(1–2), 232(2002)
4 SHI Limin, ZHAO Hongsheng, YAN Yinghui, TANG Chunhe, Fabrication of high purity porous SiC ceramics using coat mix process, Materials Science and Engineering: A, 460–461, 645(2007)
5 P.J.Jorgensen, M.E.Wadsworth, I.B.Cutler, Oxidation of silicon carbide, Journal of the American Ceramic Society, 64, 613(1959)
6 D.Das, J.Farjas, P.Roura, Passive oxidation kinetics of SiC microparticles, Journal of the American Ceramic Society, 87(7), 1301(2004)
7 J.A.Costello, R.E.Tressler, Oxidation kinetics of hot–pressed and sintered alpha–SiC, Journal of the American Ceramic Society, 64, 327(1981)
8 J.A.Costello, R.E.Tressler, Oxidation kinetics of silicon carbide crystals and ceramics: I, in dry oxygen, Journal of the American Ceramic Society, 69(9), 674(1986)
9 T.Narushima, T.Goto, T.Hirai, High temperature passive oxidation of chemically vapor deposited silicon carbide, Journal of the American Ceramic Society, 72, 1386(1989)
10 C.E.Ramberg, G.Cruciani, K.E.Spear, R.E.Tressler, Passive oxidation kinetics of high purity silicon carbide from 800oC to 1100oC, Journal of the American Ceramic Society, 79, 2897(1996)
11 R.C.A.Harris, Oxidation of 6H–alpha silicon carbide platelets, Journal of the American Ceramic Society, 58, 7(1975)
12 V.Presser, K.G.Nichel, Silica on silicon carbide, Critical Reviews in Solid State and Materials Sciences, 33(1), 1(2008)
13 U.R.Evans, The Corrosion and Oxidation of Metals (London, Edward Arnolk, 1960) p.834
14 F.Porz, F.Th¨ummler, Oxidation mechanism of porous silicon nitride, Journal of Materials Science, 19, 1283(1984)
15 N.S.Jacobson, Corrosion of silicon–based ceramics in combustion environments, Journal of the American Ceramic Society, 76(1), 3(1993)
16 K.L.Luthra, Some new perspectives on oxidation of silicon carbide and silicon nitride, Journal of the American Ceramic Society, 74(5), 1095(1991)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] 王兴平, 薛文斌, 王文选. Zr-2合金表面ZrO2/Cr复合膜的高温蒸汽氧化行为[J]. 材料研究学报, 2023, 37(10): 759-769.
[12] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[14] 徐阳, 李彦睿, 刘宝胜, 刘雯, 张少华, 卫英慧. 无取向硅钢中第二相的析出行为[J]. 材料研究学报, 2023, 37(1): 47-54.
[15] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.