Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (3): 187-194    DOI: 10.11901/1005.3093.2016.323
  研究论文 本期目录 | 过刊浏览 |
聚酯表面类金刚石薄膜的制备及疏水性能
孙丽丽1,2,郭鹏1,李晓伟1,柯培玲1,汪爱英1()
1 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室 宁波 315201
2 中国科学院大学 北京 100049
Preparation and Hydrophobic Properties of Diamond-like Carbon Films on PET Substrates
Lili SUN1,2,Peng GUO1,Xiaowei LI1,Peiling KE1,Aiying WANG1()
1 Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
引用本文:

孙丽丽,郭鹏,李晓伟,柯培玲,汪爱英. 聚酯表面类金刚石薄膜的制备及疏水性能[J]. 材料研究学报, 2017, 31(3): 187-194.
Lili SUN, Peng GUO, Xiaowei LI, Peiling KE, Aiying WANG. Preparation and Hydrophobic Properties of Diamond-like Carbon Films on PET Substrates[J]. Chinese Journal of Materials Research, 2017, 31(3): 187-194.

全文: PDF(837 KB)   HTML
摘要: 

采用线性离子束技术在PET基材表面制备类金刚石薄膜,分析薄膜结构、性能随离子束电流的演变规律并研究了薄膜润湿特性与表面形貌、结构、表面能的作用关系。结果表明:沉积在PET表面的类金刚石薄膜具有典型的非晶碳膜结构特征,随着离子束电流的增大sp2/sp3比值由0.774增加到1.622,薄膜表面的石墨化程度提高;改性后的PET材料接触角从63.51°增大到103.7°。进一步分析发现,疏水性能的提高归因于材料表面能的降低,表面石墨化程度的提高和微-纳结构的形成是表面能降低的根本原因。此外,疏水的PET材料在500~760 nm可见光范围内具有一定的増透效果,透过率达到88.5%以上。用线性离子束沉积碳膜及刻蚀技术能得到合适的微观形貌和表面化学结构,可在保持基体材料透明性的同时提高PET柔性聚合物材料的疏水性能。

关键词 有机高分子材料疏水性类金刚石表面形貌表面能    
Abstract

In order to achieve hydrophobic properties and good wear resistance of PET materials, diamond-like carbon films were deposited on PET substrates by linear ion beam (LIS) technology with varying ion beam current. The microstructure, morphology and wettability were analyzed, and the relationship between wetting behavior and surface morphology, microstructure, surface energy was investigated. The results show that the deposited diamond-like carbon film is typical amorphous carbon, its sp2/sp3 increased from 0.774 to 1.622 with increase of LIS current, which indicated the increased graphitization. Meanwhile, the water contact angle of PET increased from 63.51° to 103.7°. Further analysis found that the hydrophobicity can be attributed to the enhanced graphitization and formation of nano-micro structure, which could result in a decrease of surface energy. In addition, the transmissivity in visible light range of PET could reach to over 88.5%, which showed an enhanced effect within the range of 500~760 nm. Therefore, controlling proper surface morphology and low surface energy by plasma modification technology can effectively improve the hydrophobic properties of flexible polymer materials, while the transparency of PET material was maintained.

Key wordsorganic polymer materials    hydrophobicity    diamond-like carbon    surface morphology    surface energy
收稿日期: 2016-06-11     
基金资助:国家国际科技合作专项(2014DFG52430)
Samples Deposition process
LIS current
/A
Ar etching
time/min
Bias
/V
Flow rate of CH4
/(mLmin-1)
Flow rate of Ar
/(mLmin-1)
1# - - - - -
2# 0.1 10 -100 6 30
3# 0.15 10 -100 6 30
4# 0.2 10 -100 6 30
表1  DLC薄膜沉积参数表
图1  样品接触角的变化
图2  样品的表面能及表面能各分量的变化
图3  PET沉积碳膜后的拉曼光谱图
图4  不同样品的元素含量、C 1s 结合能谱及sp2/sp3变化
图5  不同样品的表面粗糙度变化
图6  不同样品的SEM表面形貌图
图7  不同DLC处理样品与PET基体之间的高度差
图8  可见光范围内疏水样品3#和4#的透过率
[1] Dong C L, Bai X Q, Yan X P, et al.Research status and advances on tribological study of materials under ocean environment[J]. Tribology, 2013, 33: 311
[1] (董从林, 白秀琴, 严新平等. 海洋环境下的材料摩擦学研究进展与展望[J]. 摩擦学学报, 2013, 33: 311)
[2] Niu M, Xue B X, Li J Y, et al.Preparation and properties of CMSs-An/PET flame retardant composites[J]. Chin. J. Mater. Res., 2015, 29(2): 143
[2] (牛梅, 薛宝霞, 李静亚等. CMSs-An/PET复合阻燃材料的制备和性能[J]. 材料研究学报, 2015, 29(2): 143)
[3] Wang T T, Wang X C, Zhao G D.Research progress in PET surface modification[J]. China Synthetic Fiber Ind., 2011, 34(4): 48
[3] (王甜甜, 王晓春, 赵国樑. PET表面改性研究进展[J]. 合成纤维工业, 2011, 34(4): 48)
[4] Gao S H, Zhou K S, Wen L S.Polymer surface amphiphobic modification by low temperature plasma[J]. Ploym. Mater. Sci. Eng., 2010, 26(1): 166
[4] (高松华, 周克省, 闻立时. 聚合物低温等离子体表面双疏改性的研究现状[J]. 高分子材料科学与工程, 2010, 26(1): 166)
[5] Woodward I, Schofield W C E, Roucoules V, et al. Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films[J]. Langmuir, 2003, 19: 3432
[6] Guenther M, Sahre K, Suchaneck G, et al. Influence of ion-beam induced chemical and structural modification in polymers on moisture uptake [J]. Surf. Coat. Technol., 2001, 142-144: 482
[7] Cui F Z, Zheng C L.New progress of plasma surface engineering[J]. China Surf. Eng., 2003, 16(4): 7
[7] (崔福斋, 郑传林. 等离子体表面工程新进展[J]. 中国表面工程, 2003, 16(4): 7)
[8] Zhou H, Wang H X, Niu H T, et al.Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating[J]. Adv. Mater., 2012, 24: 2409
[9] Bae G Y, Jeong Y G, Min B G.Superhydrophobic PET fabrics achieved by silica nanoparticles and water-repellent agent[J]. Fiber. Polym., 2010, 11: 976
[10] Zhou K, Ke P L, Wang A Y, et al.Electrochemical properties of nitrogen-doped DLC films deposited by PECVD technique[J]. Chin. J. Mater. Res., 2014, 28(3): 161
[10] (周凯, 柯培玲, 汪爱英等. PECVD制备掺氮类金刚石薄膜的电化学特性[J]. 材料研究学报, 2014, 28(3): 161)
[11] Rahmawan Y, Jang K J, Moon M W, et al.Anti-biofouling coating by wrinkled, dual-roughness structures of diamond-like carbon (DLC)[J]. BioChip J., 2009, 3: 143
[12] Shin B S, Lee K R, Moon M W, et al.Extreme water repellency of nanostructured low-surface-energy non-woven fabrics[J]. Soft Matter, 2012, 8: 1817
[13] Pandiyaraj K N, Selvarajan V, Heeg J, et al.Influence of bias voltage on diamond like carbon (DLC) film deposited on polyethylene terephthalate (PET) film surfaces using PECVD and its blood compatibility[J]. Diam. Relat. Mater., 2010, 19: 1085
[14] Owens K, Wendt R C.Estimation of the surface free energy of polymers[J]. J. Appl. Polym. Sci., 1969, 13: 1741
[15] Bhushan B, Jung Y C.Micro-and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces[J]. Nanotechnology, 2006, 17: 2758
[16] Xu J H, Li M, Zhao Y, et al.Advance of wetting behavior research on the superhydrophobic surface with micro-and nano-strucutures[J]. Prog. Chem., 2006, 18: 1425
[16] (徐建海, 李梅, 赵燕等. 具有微纳米结构超疏水表面润湿性的研究[J]. 化学进展, 2006, 18: 1425
[17] Roy R K, Choi H W, Park S J, et al.Surface energy of the plasma treated Si incorporated diamond-like carbon films[J]. Diam. Relat. Mater., 2007, 16: 1732
[18] Li X B, Liu Y.Wetting mechanisms and models on solid surfaces[J]. Funct. Mater., 2007, 38(S1): 3919
[18] (李小兵, 刘莹. 固体表面润湿性机理及模型[J]. 功能材料, 2007, 38(S1): 3919)
[19] Jiang L W, Wang R, Yang B X, et al.Binary cooperative complementary nanoscale interfacial materials[J]. Pure Appl. Chem., 2000, 72: 73
[20] Casiraghi C, Ferrari A C, Robertson J.Raman spectroscopy of hydrogenated amorphous carbons[J]. Phys. Rev., 2005, 72B: 085401
[21] Dai W, Wu G S, Sun L L, et al.Effect of substrate bias on microstructure and properties of diamond-like carbon films by linear ion beam system[J]. Chin. J. Mater. Res., 2009, 23(6): 598
[21] (代伟, 吴国松, 孙丽丽等. 衬底负偏压对线性离子束DLC膜微结构和物性的影响[J]. 材料研究学报, 2009, 23(6): 598)
[22] Ostrovskaya L Y.Studies of diamond and diamond-like film surfaces using XAES, AFM and wetting[J]. Vacuum, 2002, 68: 219
[23] Asl A M, Kameli P, Ranjbar M, et al.Correlations between microstructure and hydrophobicity properties of pulsed laser deposited diamond-like carbon films[J]. Superlattice. Microst., 2015, 81: 64
[24] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday Soc., 1944, 40: 546
[25] Feng L B, Zhang H X, Wang Z L, et al.Superhydrophobic aluminum alloy surface: fabrication, structure and corrosion resistance[J]. Colloids Surf.: Physicochem. Eng. Asp., 2014, 441A: 31
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[7] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] 熊文文, 何嵩, 郑淞生, 程其进, 沈宏勋, 陈朝. RF-PECVD法制备类金刚石薄膜[J]. 材料研究学报, 2021, 35(2): 154-160.
[14] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[15] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.