Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (6): 475-480    DOI: 10.11901/1005.3093.2018.694
  研究论文 本期目录 | 过刊浏览 |
低熔点玻璃粉包覆FeSiAl合金的结构和电磁性能
张达理,刘育建(),方俊
华东理工大学材料科学与工程学院 上海 200237
Structure and Electromagnetic Properties of Glass D250 Coated FeSiAl Alloy Flakes
Dali ZHANG,Yujian LIU(),Jun FANG
School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
引用本文:

张达理,刘育建,方俊. 低熔点玻璃粉包覆FeSiAl合金的结构和电磁性能[J]. 材料研究学报, 2019, 33(6): 475-480.
Dali ZHANG, Yujian LIU, Jun FANG. Structure and Electromagnetic Properties of Glass D250 Coated FeSiAl Alloy Flakes[J]. Chinese Journal of Materials Research, 2019, 33(6): 475-480.

全文: PDF(5371 KB)   HTML
摘要: 

将低熔点玻璃粉D250绝缘包覆剂与扁平化的FeSiAl合金粉末机械混合,进行热处理使D250熔融流动而包覆在片状FeSiAl粉末表面。借助XRD,SEM,XRF和EDS等手段研究了包覆后粉末的物相组成、表面形貌和元素组成;用矢量网络分析仪测试了材料在1~18 GHz频率范围内的电磁参数和反射损耗。结果表明,熔融包覆后的粉末形成均匀致密的包覆层,其复介电常数的实部降低到8左右。热处理温度为700℃时材料的最大反射损耗降至-40.10dB,有效频宽达到3.76 GHz。

关键词 金属材料FeSiAl合金熔融包覆吸波性能    
Abstract

FeSiAl alloy flakes were coated with glass powder D250 of low melting point via a two-step process, i.e. FeSiAl alloy flakes and glass powders D250 were firstly blended by ball milling to prepare D250 powders covered FeSiAl alloy flakes and then which was heat treated at proper elevated temperature. The phase composition, surface topography and composition of the coated flakes were characterized by using XRD, SEM, XRF and EDS. The electromagnetic parameter and reflection loss were also assessed in the frequency range of 1~18 GHz by using vector network analyzer. The results show that a dense coating formed on the flakes with uniform appearance, which present a lower real part of their complex permittivity of about 8. The glass D250 coated FeSiAl alloy flakes with optimal performance could be acquired when the heat treatment process was conducted at 700℃, namely the maximum reflection loss depresses to -40.10 dB, and the effective bandwidth reaches to 3.76 GHz, respectively.

Key wordsmetallic materials    FeSiAl alloy    melt coating    absorptivity
收稿日期: 2018-12-06     
ZTFLH:  TM25  
作者简介: 张达理,男,1993年生,硕士
图1  FeSiAl磁粉及其包覆后的XRD谱
图2  FeSiAl磁粉及其包覆后的SEM照片
图3  FeSiAl磁粉熔融包覆后的EDS图
OZnSiNaCaMgAlKBaTiRb
29.7%24.5%15.1%8.4%6.8%5.7%3.2%3.1%2.7%0.4%0.3%
表1  D250玻璃粉XRF元素分析
图4  FeSiAl磁粉及其包覆后的复介电常数(a)复介电常数实部,(b)复介电常数虚部
图5  FeSiAl磁粉及其包覆后的复磁导率(a)复磁导率实部,(b)复磁导率虚部
图6  FeSiAl磁粉及其包覆后的反射损耗图
[1] Ma G, Duan Y, Liu Y, et al. Effect of surface modified SiO2, powders on microwave absorbing properties of flaky FeSiAl coatings [J]. Journal of Materials Science Materials in Electronics, 2018, 29(17): 405
[2] Feng Y, Tang C, Qiu T. Effect of ball milling and moderate surface oxidization on the microwave absorption properties of FeSiAl composites [J]. Materials Science and Engineering: B, 2013, 178(16): 1005
[3] Liu C, Cai J, Duan Y, et al. Aligning flaky FeSiAl particles with a two-dimensional rotating magnetic field to improve microwave-absorbing and shielding properties of composites [J]. Journal of Magnetism and Magnetic Materials, 2018, 458: 116
[4] Zhou T D, Liang D F, Deng L J, et al. Electron Structure and Microwave Absorbing Ability of Flaky FeSiAl Powders [J]. Journal of Materials Science and Technology, 2011, 27(2): 170
[5] Wang L, Quan Q, Zhang L, et al. Microwave absorption of NdFe magnetic powders tuned with impedance matching [J]. Journal of Magnetism and Magnetic Materials, 2017, 449: 385
[6] Zhou L, Huang J, Wang X, et al. Mechanical, dielectric and microwave absorption properties of FeSiAl/Al2O3 composites fabricated by hot-pressed sintering [J]. Journal of Alloys and Compounds, 2017, 774: 813
[7] Xie D Z, Lin K H, Lin S T. Effects of processed parameters on the magnetic performance of a powder magnetic core [J]. Journal of Magnetism & Magnetic Materials, 2014, 353(3): 34
[8] Li Z, Xu B C, Wang J J, et al. Progress of microwave absorbing composite materials [J]. Journal of Functional Materials, 2016, 47(s1): 49
[8] (李 泽, 许宝才, 王建江等. 吸波材料复合化的研究进展 [J]. 功能材料, 2016, 47(s1): 49)
[9] Zhang Y, Zhou T. Structure and electromagnetic properties of FeSiAl particles coated by MgO [J]. Journal of Magnetism & Magnetic Materials, 2017, 426: 680
[10] Xue Z, Liu T, Liang D F, et al. NiZn-ferrite-coated FeSiAl alloy composite and its microwave electromagnetic properties [J], Journal of Magnetic Materials and Devices, 2012, 43(3): 40
[10] (薛 志, 刘 涛, 梁迪飞等. NiZn铁氧体包覆FeSiAl合金复合材料及其微波电磁性能 [J]. 磁性材料及器件, 2012, 43(3): 40)
[11] Feng G, Pengfei Li, Qun W. Effects of annealing temperature on microstructure and electromagnetic characteristics of FeSiAl alloy [J]. Electronic Components & Materials, 2009, 28(5): 11
[12] Cao Q, Gong R Z, Feng Z K, et al. Microwave absorption property of Fe-Si-Al magnetic alloy powders [J]. The Chinese Journal of Nonferrous Metals,2006, 16(3):524
[12] (曹 琦, 龚荣洲, 冯则坤等. Fe-Si-Al系合金粉微波吸收特性 [J]. 中国有色金属学报, 2006, 16(3): 524)
[13] Deng L W, Feng Z K, Jiang J J, et al. Microwave absorbing capability of Fe85Si1Al6Cr8 nanocrystalline flakes [J]. Acta Metallurgica Sinica, 2006, 42(3): 321
[13] (邓联文, 冯则坤, 江建军等. 纳米晶Fe85Si1Al6Cr8扁平状颗粒材料微波吸收特性 [J]. 金属学报, 2006, 42(3): 321)
[14] Zhang N. Study on the electromagnetic properties and mechanism of FeSiAl alloy micropowder composites [D]. Cheng Du: School of Electronic Science and Engineering, 2018
[14] (张 楠. FeSiAl系合金微粉复合材料电磁性能机理研究 [D]. 成都: 电子科技大学, 2018)
[15] Cai X, Jiang X, Xie W, et al. Effect of particle size on the preparation and microwave absorption properties of FeSiAl magnetically soft alloy hollow microspheres [J]. Defence Technology, 2018, 14(5): 477
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.