Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (10): 735-741    DOI: 10.11901/1005.3093.2018.632
  研究论文 本期目录 | 过刊浏览 |
1240 MPaTi-38644高锁螺栓的拉伸疲劳增寿机理
赵庆云(),程思锐,黄宏
中国航空制造技术研究院 北京 100024
Mechanism of Fatigue Life Enhancement for 1240 MPaHi-lock Bolt of Ti-38644 Ti-alloy
ZHAO Qingyun(),CHENG Sirui,HUANG Hong
AVIC Manufacturing Technology Institute, Beijing 100024, China
引用本文:

赵庆云,程思锐,黄宏. 1240 MPaTi-38644高锁螺栓的拉伸疲劳增寿机理[J]. 材料研究学报, 2019, 33(10): 735-741.
Qingyun ZHAO, Sirui CHENG, Hong HUANG. Mechanism of Fatigue Life Enhancement for 1240 MPaHi-lock Bolt of Ti-38644 Ti-alloy[J]. Chinese Journal of Materials Research, 2019, 33(10): 735-741.

全文: PDF(6872 KB)   HTML
摘要: 

用扫描电镜和能谱观测分析Ti-38644高强钛合金高锁螺栓的拉伸疲劳断口,揭示了高锁螺栓的疲劳裂纹萌生和扩展的微观特征和疲劳增寿机理。结果表明,Ti-38644高强钛合金高锁螺栓的疲劳断口包括疲劳裂纹萌生区、扩展区和瞬断区:疲劳裂纹从螺栓头下圆角滚压薄弱部位表面萌生,随后在基体中呈放射性扩展;进入扩展区后裂纹的尺寸由微观扩展至宏观,以疲劳条带扩展机制为主,同时也存在解理断裂。头下圆角处的变形层对Ti-38644高锁螺栓的疲劳寿命有显著的影响,变形层使Ti-38644钛合金高锁螺栓的疲劳寿命明显提高。通过微观组织与疲劳寿命的对比,探讨了Ti-38644钛合金高锁螺栓疲劳强化的作用机理。

关键词 金属材料Ti-38644高强钛合金疲劳断口增寿机理疲劳寿命高锁螺栓断口形貌    
Abstract

The tension-tension fatigue fracture for Hi-lock bolts of Ti-38644 high strength Ti-alloy has been investigated using SEM and EDS in order to reveal the microscopic characteristics of crack initiation and crack propagation, as well as the mechanism related with fatigue life enhancement. The fatigue fracture zone for Hi-lock bolt of Ti-38644 Ti-alloy can be divided into three parts: fatigue crack initiation zone, crack propagation zone and instant break zone. The fatigue cracks initiate from the surface of weak part under the bolt head, then radially propagate in matrix. The sizes of fatigue cracks display a transition from microscopic to macroscopic, once in the propagation zone. The fatigue band extension becomes the main mechanism, meanwhile, the typical features of cleavage fracture can be observed. The fatigue life for Hi-lock bolt of Ti-38644 Ti-alloy is significantly affected by deformation layer at the fillet, which may enhance the fatigue life-time for the Hi-lock bolts of Ti-38644 Ti-alloy with such deformation layer. The mechanism of strengthen anti fatigue has also been discussed by comparing the microstructure observation data and fatigue test results from different Hi-lock bolts of Ti-38644 Ti-alloy.

Key wordsmetallic materials    Ti-38644    high strength Ti-alloy    fatigue fracture    mechanism of fatigue life enhancement    Hi-lock bolt    fracture morphology
收稿日期: 2018-10-30     
ZTFLH:  TG114  
基金资助:中国航空制造院院基金(KS911309115)
作者简介: 赵庆云,女,1969年生,研究员
图1  退火态Ti-38644合金的光学照片和扫描电镜照片
图2  1240 MPa级轻型钛合金高锁螺栓实物
图3  强化后的高锁螺栓和未经强化的高锁螺栓的疲劳失效试样
图4  Ti-38644高锁螺栓的微观组织和β转变基体放大
图5  Ti-38644高锁螺栓的拉伸疲劳断口形貌
图6  未经挤压强化高锁螺栓和挤压强化后的高锁螺栓断裂位置的微观组织
图7  强化后的高锁螺栓的断口表面层能谱分析
图8  疲劳试样的微观组织位错组态
图9  Ti-38644钛合金高锁螺栓的疲劳强化机理示意图
[1] Zeng L, Haylock L, Fanning J ,et al. Evaluation of newly developed Ti-555 high-strength titanium fasteners [J]. www.alcoa.com
[2] Fanning J, Zeng L, Nyakana S ,et al. Properties and microstructures of Ti-555(Ti-5Al-5Mo-5V-3Cr-0.6Fe) for fasteners [J]. Ti-2007 Science and Technology, 2007, 1263
[3] Fanning J. Properties of TIMETAL 555 (Ti-5Al-5Mo-5V-3Cr-0.6Fe) [J]. Journal of Materials Engineering and Performance, 2005,14(6): 788
[4] Technologies SPS. New SPS TitanTM titanium fasteners for high performance racing [J]. www.SPS.com.
[5] Pang X C, Bai M Y. Fracture analysis of titanium alloy bolt [J]. Failure Analysis and Prevention, 2011, 6(3): 182
[5] 庞小超, 白明远.钛合金螺栓断裂原因分析 [J]. 失效分析与预防, 2011, 6(3): 182
[6] Gao Y K. Influence of shot peening on tension-tension fatigue properties in Ti-10V-2Fe-3Al titanium alloy [J]. The Chinese Journal of Nonferrous Metals, 2004, 14(1): 60
[6] 高玉魁. 喷丸对Ti-10V-2Fe-3Al钛合金拉拉疲劳性能的影响 [J]. 中国有色金属学报, 2004, 14(1): 60
[7] Chen J D, Liu Y, Tian F G, et al. The analysis of processes and the development of NC machine for rolling rounds of bolts[J], Manufactuing Automation, 2011, 33(12) : 72-75.
[7] 陈家兑, 刘 勇, 田丰果等. 螺栓圆角滚压工艺分析及数控圆角滚压机研制 [J]. 制造业自动化, 2011, 33(12): 72
[8] Yu S F, Wang Z Q, Liu F Z. The cool-rolling equipment for making round of high-strength bolts [J]. Aviation Maintenance & Engineering, 1997, (5): 24
[8] 余述凡, 王自勤, 刘凤章. 高强度螺栓圆角冷挤机 [J]. 航空制造工程, 1997, (5): 24
[9] Chen W, Sun Q Y, Xiao L ,et al. Effect of duplex aging on low cycle fatigue behavior in Ti-10V-2Fe-3Al alloy [J]. Rare Metal Materials and Engineering, 2012, 41(11): 1911
[9] 陈 威, 孙巧艳, 肖 林等. 双重时效对Ti1023合金低周疲劳行为的影响 [J]. 稀有金属材料与工程, 2012, 41(11): 1911
[10] Zhan X D, Zhang X Y, Li S J, et al. Critical conditions of α lamellar crushing during hot deformation in Ti-55531 near-β titanium alloy [J]. Material Science and Engineering of Powder Metallugy, 2016, 21(5): 665
[10] 詹孝冬, 张晓泳, 李少君等. Ti-55531近β钛合金中针片α组织破碎的临界变形条件 [J]. 粉末冶金材料科学与工程, 2016, 21(5): 665
[11] Zhang Z J, Zhang P, Li L L,et al. Fatigue cracking at twin boundaries: Effects of crystallographic orientation and stacking fault energy [J]. Acta Materialia, 2012, 60(6-7): 3113
[12] Huang J, Wang Z R, Zhou J. Cyclic deformation response of β -annealed Ti-5Al-5V-5Mo-3Cr alloy under compressive loading conditions [J]. Metallurgical and Materials Transactions A, 2011, 42(9): 2868
[13] Bantounas I, Dye D, Lindley T C. The role of microtexture on the faceted fracture morphology in Ti-6Al-4V subjected to high-cycle fatigue [J]. Acta Materialia, 2010, 58(11): 3908
[14] Bantounas I, Dye D, Lindley T C. The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6Al-4V [J]. Acta Materialia, 2009, 57(12): 3584
[15] Yang D M, Zhu X. Mechanical Properties and Failure Analysis of metals [M]. Beijing: Metallurgical Industry Press, 1991, 313.
[15] 杨道明, 朱 勋. 金属力学性能与失效分析 [M]. 北京: 冶金工业出版社, 1991, 313
[16] Qin D, Lu Y, Liu Q ,et al. Transgranular shearing introduced brittlement of Ti-5Al-5V-5Mo-3Cr alloy with full lamellar structure at room temperature [J]. Materials Science Engineering A, 2013, 572(11): 19
[17] Zhong Q P, Tian Y J. Failure Analysis Basis [M]. Beijing: China Machine Press, 1990, 326
[17] 钟群鹏, 田永江. 失效分析基础知识 [M]. 北京: 机械工业出版社, 1990, 326
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.