Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (1): 25-32    DOI: 10.11901/1005.3093.2016.747
  研究论文 本期目录 | 过刊浏览 |
魔芋葡甘聚糖溶液水基的润滑特性
漆雪莲, 张倩倩, 盛德尊, 李小磊, 张会臣()
大连海事大学交通运输装备与海洋工程学院 大连 116026
Lubricating Property of Water Based Lubricant of Konjac Glucomannan
Xuelian QI, Qianqian ZHANG, Dezun SHENG, Xiaolei LI, Huichen ZHANG()
Transportation Equipments and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China
引用本文:

漆雪莲, 张倩倩, 盛德尊, 李小磊, 张会臣. 魔芋葡甘聚糖溶液水基的润滑特性[J]. 材料研究学报, 2018, 32(1): 25-32.
Xuelian QI, Qianqian ZHANG, Dezun SHENG, Xiaolei LI, Huichen ZHANG. Lubricating Property of Water Based Lubricant of Konjac Glucomannan[J]. Chinese Journal of Materials Research, 2018, 32(1): 25-32.

全文: PDF(3603 KB)   HTML
摘要: 

以石英玻璃为摩擦副,研究在面接触条件下魔芋葡甘聚糖溶液的水基润滑特性。使用红外光谱仪测量了魔芋葡甘聚糖的分子结构,用多功能摩擦磨损试验机进行润滑特性试验,用LEXT OLS4000 3D激光共聚焦显微镜表征了试样的表面形貌,重点分析了不同浓度魔芋葡甘聚糖溶液的润滑特性。结果表明:浓度为0.3%的溶液具有最佳的润滑性能,石英玻璃间的摩擦系数约为0.002。在不同浓度的魔芋葡甘聚糖溶液的润滑条件下,摩擦副的摩擦系数随着转速呈现出不同的变化规律。由于硼酸离子与魔芋葡甘聚糖分子中的羟基发生化学反应生成硼酸多羟基化合物,硼酸的加入增强了水合分子层的稳定性。魔芋葡甘聚糖水基润滑界面,主要包含魔芋葡甘聚糖水合分子层和自由水分子层。水合分子层吸附在摩擦副表面形成吸附膜可避免摩擦副的直接接触,自由水分子层保证了润滑液的剪切流动性,两者的共同作用实现了有效润滑。

关键词 有机高分子材料材料表面与界面魔芋葡甘聚糖水基润滑面接触    
Abstract

The lubricating property of water-based lubricant of konjac glucomannan (KGM) was assessed for the contact surface of quartz to quartz. The molecular structure of konjac glucomannan was analyzed by Fourier transform infrared spectroscopy. The surface topographies of the worn quartz surface after sliding-wear were examined by LEXT OLS4000 3D microscope. The friction performance of the friction-pair of quartz against quartz was evaluated by the CETR Universal Micro-Tribometer (UMT-2). The lubricating property of KGM solutions was then analyzed. The results show that the 0.3% KGM solution possesses the best lubricity, in the presence of which the friction-pair of quartz exhibits a friction coefficient about 0.002. The frictional coefficient of the friction-pair of quartz varied with the KGM concentration of the solution, as well as the relatively rotating speed of the components of the friction-pair. By adding saturated boric acid to the solution, the hydration layer of KGM was promoted due to the coordination compound which was generated by the chemical reaction between the boric acid and the KGM molecules. The lubricating model of KGM solution was composed of hydrationlayers of KGM and water layers, in which the former absorbed on the frictional pairs to form a lubricating film, while the water layer ensures the shear liquidity of lubricant, only the combination of the two can realize the effective lubrication.

Key wordsorganic polymer material    surface and interface in the materials    skonjac glucomannan    water based lubrication    surface contact
收稿日期: 2016-12-20     
ZTFLH:  TG356.16  
基金资助:国家自然科学基金(51335005),中央高校基本科研业务费专项资金(3132016354)
作者简介:

作者简介 漆雪莲,女,1991年生,硕士生

图1  KGM分子的红外吸收谱
图2  KGM水合分子
图3  不同浓度溶液的摩擦系数与转速的关系
图4  0.1%溶液在不同转速下的摩擦曲线和三种不同浓度溶液的摩擦曲线(75 r/min)
图5  摩擦试验后摩擦副试样的表面形貌
图6  不同浓度的溶液润滑模型示意图
图7  不同溶液润滑下的摩擦曲线
图8  摩擦试验后摩擦副试样的表面形貌
图9  KGM-硼酸反应示意图
图10  加入硼酸后润滑液的红外吸收谱图
图11  魔芋葡甘聚糖溶液的水基润滑模型
[1] Zhang S W.Green tribology: Fundamentals and future development[J]. Friction, 2013, 1: 186
[2] Ma L R, Zhang C H, Liu S H.Progress in experimental study of aqueous lubrication[J]. Chin. Sci. Bull., 2012, 57: 2062
[3] Ma L R, Gaisinskaya-Kipnis A, Kampf N, et al.Origins of hydration lubrication[J]. Nat. Commun., 2015, 6: 6060
[4] Raviv U, Klein J.Fluidity of bound hydration layers[J]. Science, 2002, 297: 1540
[5] Klein J.Hydration lubrication[J]. Friction, 2013, 1: 1
[6] Ma Z Z, Zhang C H, Luo J B, et al.Superlubricity of a mixed aqueous solution[J]. Chinese Phys. Lett., 2011, 28: 056201
[7] Goldberg R, Schroeder A, Silbert G, et al.Boundary lubricants with exceptionally low friction coefficients based on 2D close-packed phosphatidylcholine liposomes[J]. Adv. Mater., 2011, 23: 3517
[8] Li J J, Zhang C H, Luo J B.Superlubricity behavior with phosphoric acid-water network induced by rubbing[J]. Langmuir, 2011, 27: 9413
[9] Li J J, Zhang C H, Ma L R, et al.Superlubricity achieved with mixtures of acids and glycerol[J]. Langmuir, 2013, 29: 271
[10] Sivan S, Schroeder A, Verberne G, et al.Liposomes act as effective biolubricants for friction reduction in human synovial joints[J]. Langmuir, 2010, 26: 1107
[11] Xu J, Luo J B, Liu S H, et al.Tribological characteristics of aloe mucilage[J]. Tribol. Mater. Surf. Interfaces, 2008, 2: 72
[12] Coles J M, Chang D P, Zauscher S.Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins[J]. Curr. Opin. Colloid Interface Sci., 2010, 15: 406
[13] Sheng D Z, Zhang H C.Lubricating properties of sodium alginate as an additive for water in surface contact[J]. Tribology, 2016, 36: 380(盛德尊, 张会臣. 面接触条件下海藻酸钠的水基润滑特性[J]. 摩擦学学报, 2016, 36: 380)
[14] Arad S, Rapoport L, Moshkovich A, et al.Superior biolubricant from a species of red microalga[J]. Langmuir, 2006, 22: 7313
[15] Li J J, Zhang C H, Luo J B, et al.Excellent lubricating behavior of brasenia schreberi mucilage[J]. Langmuir, 2012, 28: 7797
[16] Liu J M, Zhang C H, Zhang C H, et al.Lubricating properties of the aqueous solution of castor oil polyoxyethylene ether[J]. Tribology, 2011, 31: 240(刘俊铭, 张晨辉, 张朝辉等. 蓖麻油聚氧乙烯醚水基润滑液摩擦学特性研究[J]. 摩擦学学报, 2011, 31: 240)
[17] Kobayashi M, Terada M, Takahara A.Polyelectrolyte brushes: A novel stable lubrication system in aqueous conditions[J]. Faraday Discuss., 2012, 156: 403
[18] Banerjee S, Bhattacharya S.Food gels: gelling process and new applications[J]. Crit. Rev. Food Sci. Nutr., 2012, 52: 334
[19] Huang Y C, Yang C Y, Chu H W, et al.Effect of alkali on konjac glucomannan film and its application on wound healing[J]. Cellulose, 2015, 22: 737
[20] Shang X Y, Qin C G, Niu W N, et al.Studies and applications on konjac glucomannan as a new type of functional material[J]. Mater. Rev., 2009, 23(19): 32(尚晓娅, 钦传光, 牛卫宁等. 新型功能材料魔芋葡甘聚糖的研究与应用[J]. 材料导报, 2009, 23(19): 32)
[21] Pang J, Sun Y J, Yang Y H, et al.Studies on hydrogen bonding network structures of konjac glucomannan[J]. Chin. J. Struct. Chem., 2008, 27: 431
[22] Gao S J, Guo J M, Nishinari K.Thermoreversible konjac glucomannan gel crosslinked by borax[J]. Carbohydr. Polym., 2008, 72: 315
[23] Ratcliffe I, Williams P A, English R J, et al.Small strain deformation measurements of konjac glucomannan solutions and the influence of borate cross-linking[J]. Carbohydr. Polym., 2013, 95: 272
[24] Liu P X, Liu Y H, Yang Y, et al.Mechanism of biological liquid superlubricity of Brasenia schreberi mucilage[J]. Langmuir, 2014, 30: 3811
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[6] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[7] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[10] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[11] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[12] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[13] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[14] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[15] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.