Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (3): 175-181    DOI: 10.11901/1005.3093.2016.310
  研究论文 本期目录 | 过刊浏览 |
高铝304奥氏体不锈钢温轧态的性能研究
郭鑫,喇培清(),李恒,卢学峰,魏玉鹏
1 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
2 兰州理工大学 有色金属合金及加工教育部重点实验室 兰州 730050
Properties of Warm-rolled High Al Containing 304 Austenite Stainless Steel
Xin GUO,Peiqing LA,Heng LI,Xuefeng LU,Yupeng WEI
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, LanzhouUniversity of Technology, Lanzhou 730050, China
2 Key Laboratory of Nonferrous Metal Alloys and Processing, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
引用本文:

郭鑫,喇培清,李恒,卢学峰,魏玉鹏. 高铝304奥氏体不锈钢温轧态的性能研究[J]. 材料研究学报, 2017, 31(3): 175-181.
Xin GUO, Peiqing LA, Heng LI, Xuefeng LU, Yupeng WEI. Properties of Warm-rolled High Al Containing 304 Austenite Stainless Steel[J]. Chinese Journal of Materials Research, 2017, 31(3): 175-181.

全文: PDF(1360 KB)   HTML
摘要: 

对高铝304奥氏体不锈钢进行了温轧固溶处理,利用光学显微镜(OM)、X射线衍射(XRD)、电子探针(EPMA)分别分析合金的表面形貌、相组成及表面成分,并对其力学性能进行测试分析。结果表明,高铝合金组织中,黑色铁素体相呈现条状、短杆状及部分颗粒状分布在白色奥氏体基体上,组织分布有方向性;大部分Al元素固溶在基体中,伴有AlN等黑色相析出;随轧制温度增加,硬度和耐腐蚀性逐渐升高,伸长率达47%左右;高铝合金变形能力大幅度提高,1%Al (质量分数,下同)合金的抗拉强度可达766 MPa;合金的断口均是由大韧窝(5~15 μm)和细小韧窝(≤5 μm)构成,不同轧制温度下合金的断裂形式相似,都属韧性断裂;相同轧制温度下1.5%Al不锈钢的耐腐蚀性较好。

关键词 金属材料温轧态拉伸变形耐腐蚀性能304奥氏体不锈钢    
Abstract

304 stainless steels with different Al content were warm-rolled and subsequently solution-treated. The microstructure, phase constituent and composition of the alloys were characterized by means of OM, XRD and EPMA. The results show that black ferrite phase with shapes as strips, short rod and some granular-like distribute throughout the white austenite matrix;The majority of Al dissolves in the matrix,while there exist precipitates of AlN and other black-phases. The hardness and corrosion resistance of the steels increase gradually with the increasing rolling temperature, and their break elongation reaches about 47%. The deformation capacity of the steels is greatly improved and the tensile strength of the steel with 1% (mass fraction)Al achieves to 766 MPa. The fracture surfaces exhibit large and small dimples with size of 5~15 μm and ≤5 μm, respectively. The fracture models are similar and belong to ductile fracture. By the same rolling temperature the steel with 1.5% Al has better corrosion resistance performance.

Key wordsmetallic materials    warm-rolled    tensile deformation    corrosion resistance    304 stainless steels
收稿日期: 2016-06-03     
基金资助:国家自然科学基金(51561020)
Steel Al Cr Ni Mn Si C Fe
1 1.0 17.82 8.91 1.98 0.99 0.08 Bal.
2 1.5 17.10 8.55 1.90 0.95 0.08 Bal.
表1  实验材料的化学成分
图1  不同轧制温度下铝含量为1%的304不锈钢的显微组织
图2  不同轧制温度下铝含量为1.5%的304不锈钢的显微组织和XRD图谱
图3  304不锈钢温轧板的电子探针分析及元素分布
Temperature / ℃ Ferrite / % Average grain size / μm
550 21.0 14.61
600 18.4 18.89
650 14.1 25.48
表2  含1.5%Al的304不锈钢不同轧制温度下的铁素体含量和平均晶粒尺寸
Temperature / ℃ Ferrite / % Average grain size / μm
550 8.5 21.05
600 6.3 22.27
650 4.0 24.91
表3  含1%Al的304不锈钢不同轧制温度下的铁素体含量和平均晶粒尺寸
图4  不同轧制温度下304不锈钢的硬度和伸长率
图5  不同轧制温度304不锈钢的应力应变曲线和力学性能(a)应力-应变曲线;(b)屈服强度和抗拉强度
图6  不同轧制温度304不锈钢拉伸断口形貌
图7  不同轧制温度下304不锈钢温轧态的耐晶间腐蚀速率
[1] Luo W, Wang J, Yan J, et al.Low temperature salt bath nitriding of 304 austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(10): 107
[1] (罗伟, 王均, 闫静等. 304奥氏体不锈钢低温盐浴渗氮处理[J]. 材料热处理学报, 2012, 33(10): 107)
[2] Gao Y K.Influence of impact enhancements on tensile property of 304 austenite steel[J]. Journal of Materials Engineering, 2014, 0(8): 36
[2] (高玉魁. 冲击强化对304奥氏体不锈钢拉伸性能的影响[J]. 材料工程, 2014, 0(8): 36)
[3] Marion R. Laure M, Kevin G G, et al.Dissolution and oxidation behavior of various austenitic steels and Ni rich alloys in lead-bismuth eutectic at 520℃[J]. Journal of Nuclear Materials, 2016, 468: 153
[4] Xu X X, Zhang X F, Chen G L.Improvement of high-temperature oxidation resistance and strength in alumina-forming austenitic stainless steels[J]. Materials Letters, 2011, 65(21-22): 3285
[5] Du N, Ye C, Tian W M, et al.304 stainless steel pitting behavior by means of electronchemical impedance spectroscopy[J]. Journal of Materials Engineering, 2014, (6): 68
[5] (杜楠, 叶超, 田文明等. 304不锈钢点蚀行为的电化学阻抗谱研究[J]. 材料工程, 2014, (6): 68)
[6] Yan X Y, Sun Y F, Zhang Y, et al.Effects of Al on high temperature oxidation resistance of ZG40Gr25Ni20 wear-resistance and heat-resistance steel[J]. Foundry Technology, 2010, 31(3): 292
[6] (闫兴义, 孙玉福, 张炎等. Al对ZG40Gr25Ni20抗磨耐热钢高温抗氧化性的影响[J]. 铸造技术, 2010, 31(3): 292)
[7] Keietsu K, Yukio M, Nariaki O.Development of corrosion-resistant improved Al-doped austenitic stainless steel[J]. Journal of Nuclear Materials, 2011, 417: 892
[8] La P Q, Li Y F, Liu S G, et al.The corrosion resistance of 316L stainless steel with Al[J]. Iron Steel, 2010, 45(5): 71
[8] (喇培清, 李玉峰, 刘闪光等. Al元素对316L不锈钢组织和室温力学性能的影响[J]. 钢铁, 2010, 45(5): 71)
[9] La P Q, Meng Q, Sa X R, et al.Microstructure and mechanical properties of hot-rolled high aluminum 304 stainless steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(6): 55
[9] (喇培清, 孟倩, 撒兴瑞等. 高铝304不锈钢热轧态的显微组织和力学性能[J]. 材料热处理学报, 2014, 35(6): 55)
[10] Shi D K.Fundamentals of Materials Science [M]. Beijing: China Machine Press, 2015
[10] (石德珂. 材料科学基础[M]. 北京: 机械工业出版社, 2015)
[11] Liu S F, Zhang Y, Han H, et al.Effect of Al4C3 and Ce on as-cast microstructure and properties of AZ91D magnesium alloy[J]. Foundry, 2009, 58(6): 546
[11] (刘生发, 张元, 韩辉等. Al4C3和Ce对AZ91D镁合金铸态显微组织和性能的影响[J]. 铸造, 2009, 58(6): 546)
[12] Hu B, Trotter G, Baker I, et al.The effects of cold work on the microstructure and mechanical properties of intermetallic strengthened alumina-forming austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 2015, 46A: 3773
[13] He L F, Roman P, Leng B, et al.Corrosion behavior of an alumina forming austenitic steel exposed to supercritical carbon dioxide[J]. Corrosion Science, 2014, 82: 67
[14] Yan Y F, Xu X Q, Zhou D Q, et al.Hot corrosion behavior and its mechanism of a new alumina-forming austenitic stainless steel in molten sodium sulphate[J]. Corrosion Science, 2013, 77: 202
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.