材料研究学报, 2025, 39(8): 603-611 DOI: 10.11901/1005.3093.2024.355

研究论文

6H-SiC纳米磨削亚表面损伤机理的分子动力学研究

耿瑞文1, 杨志豇2, 杨蔚华2, 谢启明3, 游津京3, 李立军,2, 吴海华1

1.三峡大学 石墨增材制造技术与装备湖北省工程研究中心 宜昌 443002

2.三峡大学机械与动力学院 宜昌 443002

3.昆明物理研究所 昆明 650223

Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles

GENG Ruiwen1, YANG Zhijiang2, YANG Weihua2, XIE Qiming3, YOU Jinjing3, LI Lijun,2, WU Haihua1

1.Hubei Provincial Engineering Research Center for Graphite Additive Manufacturing Technology and Equipment, Three Gorges University, Yichang 443002, China

2.School of Mechanical and Dynamics, Three Gorges University, Yichang 443002, China

3.Kunming Institute of Physics, Kunming 650223, China

通讯作者: 李立军,教授,llj@ctgu.edu.com,研究方向为超精密加工工艺与装备

责任编辑: 黄青

收稿日期: 2024-08-19   修回日期: 2025-01-17  

基金资助: 湖北省技术创新专项重大项目(2019AAA164)
三峡大学人才引进项目(2022Y0037)
水电机械设备设计与维护湖北省重点实验室开放基金(2023KJX04)

Corresponding authors: LI Lijun, Tel: 15997659483, E-mail:llj@ctgu.edu.com

Received: 2024-08-19   Revised: 2025-01-17  

Fund supported: Technological Innovation Special Major Project of Hubei Province(2019AAA164)
Talent Introduction Project of Three Gorges University of China(2022Y0037)
Key Laboratory Open Fund for Design of Hubei Province and Maintenance of Hydropower Mechanical Equipment(2023KJX04)

作者简介 About authors

耿瑞文,男,1993年生

摘要

应用分子动力学模拟磨削硬脆性6H-SiC纳米材料工件时其表面的变形行为,研究了亚表面的损伤机理以及磨粒尺寸和磨削速度的影响。结果表明:磨粒尺寸大于4.9 nm时,随着磨削速度的提高6H-SiC材料的去除率先提高后降低,去除方式以黏附为主。在磨削速度恒定的条件下,随着磨粒尺寸的增大6H-SiC工件亚表面的温度、损伤深度和晶格缺陷程度先降低后提高。磨粒尺寸为5.4 nm时,磨削速度对工件亚表面的损伤深度和磨削力的影响更为显著。对于本文的模拟参数,采用较高的磨削速度和5.4 nm的磨粒加工表面的质量更高。

关键词: 无机非金属材料; 纳米磨削; 表面质量; 分子动力学模拟; 亚表面损伤; 磨粒尺寸; 磨削速度

Abstract

In-depth study of the damage mechanism of hard and brittle 6H-SiC materials during the grinding process with nano-particles is of great significance to improving the surface quality of 6H-SiC components. In the article, the surface deformation behavior of the bulk 6H-SiC materials during grinding with nano-diamond abrasives was simulated by means of molecular dynamics simulation, while revealing the subsurface damage mechanism and considering the effects of abrasive grain size and grinding speed. The results show that when the abrasive grain size is larger than 4.9 nm, as the grinding speed increases, the material removal first increases and then decreases, and the removal of 6H-SiC material is primarily based on adhesion. By a constant grinding speed, as the abrasive grain size increases, the damage depth, subsurface temperature, and lattice defect degree of the 6H-SiC workpiece first decrease and then increase. Additionally, the grinding speed has much significant impact on the subsurface damage depth and grinding force of the workpiece, for the abrasive grain size is 5.4 nm. It is expected that by adopting 5.4 nm abrasive grains and setting higher grinding speeds,the higher machined surface quality may be achieved within the simulation parameters range.

Keywords: inorganic non-metallic materials; nano-grinding; surface quality; molecular dynamics simulation; subsurface damage; abrasive grain size; grinding speed

PDF (16775KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611 DOI:10.11901/1005.3093.2024.355

GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. Chinese Journal of Materials Research, 2025, 39(8): 603-611 DOI:10.11901/1005.3093.2024.355

碳化硅(第三代半导体)具有高导热性、低介电常数和优异的抗辐射损伤性能,得到了广泛的应用[1~3]。六方晶系碳化硅6H-SiC具有优异的光学性能和极高的电子迁移率,是制造高温高频和高功率光学元件的首选材料[4~6]。对应用在光学领域中的6H-SiC的表面和亚表面的质量,要求极高。但是,6H-SiC的脆性和硬度较高,机械加工极易使其产生脆性断裂。磨削速度和磨粒尺寸是超精密磨削的重要参数,深入分析磨粒尺寸和磨削速度对6H-SiC磨削损伤的影响,对提高其表面质量和抑制亚表面损伤有重要的意义。

只进行6H-SiC的超精密磨削实验,难以在原子尺度上实时分析其微观结构和缺陷的演变。基于分子动力学(MD)的原子模拟,可深入研究6H-SiC微观结构的演化,从而揭示超精密磨削时其变形机制的演变以及纳米级磨粒尺寸的变化对磨削力、磨削后工件表面质量等关键指标的影响[7,8]。Tian[9]进行分子动力学模拟研究了6H-SiC加工的纳米力学性能和材料去除机理,发现磨粒形状等因素对纳米材料工件表面的去除行为有显著的影响。Zhao等[10]研究了不同尺寸的磨粒对3C-SiC纳米磨削损伤的影响,发现选择合适的磨粒尺寸可获得更好的加工表面和亚表面质量。同时,采用较小尺寸的磨粒会挤压和刮擦工件,从而降低材料去除率。Yin等[11]对6H-SiC进行了金刚石砂轮磨料加工,发现进给速率不如磨粒尺寸对表面生成的影响显著,且金刚石磨粒尺寸从20 µm减小到7 µm时材料发生脆塑转变。Li等[12]研究了6H-SiC的研磨性能与磨粒尺寸的关系,发现其表面粗糙度和去除率与磨粒尺寸成正比。Joo等[13]通过实验研究不同磨粒尺寸对磨削GaN时的表面形貌和亚表面损伤深度的影响,发现表面粗糙度与亚表面损伤深度与磨粒尺寸成正比。

本文进行分子动力学模拟研究磨削速度和磨粒尺寸对6H-SiC表面形貌、亚表面损伤深度、工件的温度和力学性能的影响,并揭示其在纳米磨削中的变形机理。

1 模拟方法

使用开源分子动力学模拟软件LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator)进行分子动力学模拟[14~17]图1给出了本文建立的纳米磨削的分子动力学模拟模型。此模型由6H-SiC工件和金刚石磨粒组成,其中工件分为边界层、恒温层、牛顿层[18]。设置固定的边界层以确保工件在磨削过程中保持静止[19]。其中的恒温层原子采用NVT系综以传导纳米磨削时产生的热量,从而维持系统的平衡温度。牛顿层的原子采用NVE系综,使其运动遵循牛顿第二定律[20]。模型在y方向上设置周期性边界条件以消除边界效应,在xz方向上设置固定边界条件。

图1

图1   6H-SiC的纳米磨削模拟模型

Fig.1   Nano-grinding simulation model of 6H-SiC


使用Tersoff势函数模拟6H-SiC的纳米磨削过程。用Tersoff势函数模拟化学键的形成和断裂,解释磨削过程中材料的去除行为。Tersoff势函数用于模拟Si-Si、C-C、Si-C原子之间的相互作用,Morse势描述金刚石磨粒与工件的Si原子和C原子之间的相互作用。视金刚石磨粒为刚体,忽略金刚石磨粒内部C-C原子之间的相互作用[21]

模拟纳米磨削前,先用共轭梯度算法优化6H-SiC工件使其势能最小化,然后通过热弛豫使其在300 K达到自然平衡状态[22]。磨削模拟参数列于表1

表1   纳米磨削模拟参数

Table 1  Parameters in nano-grinding simulation

ParameterValue

Workpiece dimension

Grinding direction

25 nm × 13 nm × 16 nm

1¯ 0 0

Grinding speed / m·s-150、100、200
Grinding depth / nm0.15
Tool radius / nm4.9、5.4、5.9
Timestep / ps0.001
Initial temperature / K300
EnsembleNVT, NVE

新窗口打开| 下载CSV


2 模拟结果

2.1 表面形貌分析

图2给出了工件原子在z方向上的位移。可以看出,磨粒尺寸为5.4 nm时绝大部分工件原子在z方向的位移相近,表明此刻工件的加工表面质量较高。如图3a所示,随着磨削速度的提高磨屑原子数量先增加后减小。其原因是,尺寸适当的磨粒前方的磨屑原子会被移动的磨粒挤压至工件表面,从而得到了较小的磨屑原子数量和较高的表面加工质量。图3a还表明,磨削速度恒定时,随着磨粒尺寸的增大磨屑原子的数量先增加后减少。磨屑原子是磨削中遭到破坏的晶体结构的原子,因此使用直径为5.4 nm的磨粒可减小6H-SiC工件表面的破坏程度和磨屑的堆积。图3b给出了使用不同磨削参数的工件中非晶原子的数量。磨削速度恒定时,随着磨粒尺寸的增大非晶原子的数量先减少后增加,表明使用5.4 nm的磨粒可减少工件的非晶化。

图2

图2   6H-SiC工件纳米磨削后的表面形貌

Fig.2   Surface morphology after nano-grinding of 6H-SiC


图3

图3   6H-SiC工件不同磨削速度和磨粒尺寸研究下的切屑原子数量和非晶原子数量

Fig.3   Number of chip atoms (a), the number (b) of amorphous atoms under different grinding speeds and abrasive grain sizes


2.2 亚表面的损伤

纳米磨削产生的亚表面损伤使6H-SiC晶体结构的完整性受到破坏[23],从而影响其光学性能。如图4所示,非晶原子设置为灰色,其它原子设置为蓝色。磨粒尺寸大于4.9 nm时,随着磨削速度的提高亚表面的损伤深度(SSD)先增大后减小,减小的幅度大于增大的幅度。在磨削速度恒定的条件下,随着磨粒尺寸的增大SSD先减小后增大。

图4

图4   不同磨削速度和磨粒尺寸条件下6H-SiC工件的亚表面损伤深度

Fig.4   Subsurface damage depth of workpiece under different grinding speeds and abrasive grain sizes


图5给出了工件亚表面中的相变。在纳米磨削过程中,磨粒下方的立方金刚石结构中的原子受到磨粒的挤压而转变为非晶原子。这表明,工件亚表面发生了相变,工件表面发生了弹性变形。同时,在工件亚表面的损伤深度区域,少量原子从立方金刚石结构转变为六方金刚石结构。在纳米磨削过程中,少量原子从六方金刚石结构转变为立方金刚石结构。这表明,在已磨削区域部分原子间的共价键可能被磨粒破坏或削弱,成为无定形结构的黏附状态。

图5

图5   不同磨削速度和磨粒尺寸条件下6H-SiC工件亚表面中的相变

Fig.5   Phase transition in the subsurface of the workpiece under different grinding speeds and abrasive grain sizes


用径向分布函数(RDF)分析了晶格缺陷对C-C、C-Si、Si-Si、Si-C原子间的分布和相互作用的影响[24]图6给出了不同磨削阶段、不同磨削速度和磨粒尺寸条件下的径向分布函数。可以看出,随着磨削速度的提高径向分布函数的各个峰值降低、峰的宽度减小,表明晶格缺陷的程度提高。随着磨粒尺寸的增大,晶格缺陷程度先降低后提高。同时,磨削速度的改变引起的径向分布函数的变化远没有磨粒尺寸改变引起的变化显著,表明在纳米磨削6H-SiC过程中磨粒尺寸是影响磨削工件晶格缺陷程度的主要因素。

图6

图6   径向分布函数:(a)不同纳米磨削阶段、(b)不同磨削速度、(c)不同磨粒尺寸

Fig.6   Radial distribution function: (a) different grinding cutting stage, (b) different grinding speeds, (c) different abrasive grain sizes


2.3 温度和Von Mises应力

在纳米磨削过程中,磨粒与工件表面之间的相互摩擦、剪切和挤压是工件温度升高的主要原因[25]。温度的变化严重影响工件的表面变形和材料去除机理[23,26~28]图7中的黑色箭头指出了不同纳米磨削参数工件的最高温度。在磨粒尺寸恒定的条件下,随着磨削速度的提高最高温度随之提高。这个结果与图3图6c的规律相同,表明6H-SiC工件的温度与非晶原子数量和晶格缺陷程度密切相关。在磨削速度恒定的条件下,随着磨粒尺寸的增大最高温度先降低后提高。磨粒尺寸为5.4 nm时,随着磨削速度的提高表示高温的红色区域面积先增大后减小,如图2图3a所示,其原因是磨粒前方堆积的磨屑原子较少。

图7

图7   不同磨削速度和磨粒尺寸研究下6H-SiC工件的温度分布

Fig.7   Temperature distribution of the workpiece under different grinding speeds and abrasive grain sizes


图7e~f所示,磨削速度为100 m/s、磨粒尺寸为5.4 nm时磨粒前方红色高温区域的面积大于磨粒尺寸为5.9 nm时的面积,且高温区域集中在磨粒的前下方。结合图2e~f图3a图4可知,多出的这部分热量有助于使切屑原子数量较大和亚表面损伤深度较小。

Von Mises应力

σMises=σxx-σyy2+σyy-σzz2+σzz-σxx2+6τxy2+τyz2+τzx22

可用于评估材料在复杂应力状态下变形和安全性[29,30]。其中σxxσyyσzzτxyτyzτzx分别为应力张量分量[31]。如图8所示,磨粒尺寸为4.9 nm、5.9 nm时,最大Von Mises应力随着磨削速度的提高而增大;磨粒尺寸为5.4 nm时,随着磨削速度的提高最大Von Mises应力值先增大后减小。图9给出了纳米磨削参数不同的条件下工件横截面的Von Mises应力分布。可以看出,在磨粒尺寸恒定的条件下Von Mises应力的分布随着磨削速度的变化没有显著的改变;但是在磨削速度恒定的条件下,随着磨粒尺寸的增大表示高Von Mises应力的红色区域面积先减小后增大。这表明,磨削时直径为5.4 nm的磨粒与工件之间的相互作用力较为均匀,从而降低了应力集中,如图4所示,这有利于减小工件亚表面损伤深度。同时,与磨削速度相比磨粒尺寸对Von Mises应力的影响更大。

图8

图8   不同磨削速度和磨粒尺寸条件下的最大Von Mises应力

Fig.8   Maximum Von Mises stress under different grinding speeds and abrasive grain sizes


图9

图9   不同磨削速度和磨粒尺寸条件下6H-SiC工件的Von Mises应力分布

Fig.9   Von Mises stress distribution of the workpiece under different grinding speeds and abrasive grain sizes


2.4 磨削力和摩擦系数

在纳米磨削过程中,磨粒与工件之间磨削力的改变使应力发生变化,从而影响工件亚表面的损伤深度和相变[32]。如图1011所示,磨粒尺寸为5.4 nm和5.9 nm时,随着磨削速度的提高切向力(x方向)和法向力(z方向)先增大后减小。磨粒尺寸5.4 nm时,切向力更快地达到平衡状态。在磨削速度恒定的条件下,随着磨粒尺寸的增大切向力和法向力先减小后增大。

图10

图10   不同磨削速度和磨粒尺寸条件下的切向磨削力

Fig.10   Tangential grinding force under different grinding speeds and abrasive grain sizes


图11

图11   不同磨削速度和磨粒尺寸条件下的法向磨削力

Fig.11   Normal grinding force under different grinding speeds and abrasive grain sizes


摩擦系数为切向力与法向力的商。如图12所示,在磨削速度恒定的条件下,随着磨粒尺寸的增大摩擦系数先减小后增大。这表明,直径为5.4 nm的磨粒对工件表面的破坏程度最低,从而使表面质量更好。在磨粒尺寸恒定的条件下,摩擦系数随着磨削速度的提高而减小,特别是磨粒尺寸为5.4 nm时。

图12

图12   不同磨削速度和磨粒尺寸条件下6H-SiC工件的摩擦系数

Fig.12   Friction coefficient under different grinding speeds and abrasive grain sizes


3 结论

(1) 磨粒的尺寸大于4.9 nm时,随着磨削速度的提高6H-SiC工件的去除率先提高后降低。在磨削速度较高的条件下使用5.4 nm的磨粒时6H-SiC工件的加工表面质量和亚表面质量较高。

(2) 在黏附状态下,6H-SiC的塑性变形机理主要是表面非晶化。在恒定的磨削速度条件下,随着磨粒尺寸的增大工件亚表面的损伤深度和晶格缺陷程度先减小后增大。

(3) 与磨削速度相比,磨粒尺寸对工件温度、Von Mises应力的影响更为显著。在磨削速度恒定的条件下,随着磨粒尺寸的增大工件的最大温度先降低后提高,切向力和法向力先减小后增大。使用尺寸为5.4 nm磨粒,随着磨削速度的提高摩擦系数显著减小。

参考文献

Wu Z H, Zhang L C.

Mechanical properties and deformation mechanisms of surface-modified 6H-silicon carbide

[J]. J. Mater. Sci. Technol., 2021, 90: 58

DOI      [本文引用: 1]

The effect of amorphous film on the deformation mechanism and mechanical properties of 6H-SiC were systematically explored by a combination of both experiments and molecular dynamic (MD) simulations in nanoindentation. The experimental results showed that the plastic deformation of surface-modified 6H-SiC is mainly accommodated by dislocation activities in the subsurface and an amorphous layer with uniform thickness. The MD results indicated that the amorphous layer on the surface of the residual indentation mark consists of both amorphous SiO2 and SiC due to direct amorphization. In addition, the amorphous SiO2 film undergoes densification and then ruptures with the indentation depth increases. The modulus and hardness increase with increasing the indentation depth at the initial stage but will reach their stable values equivalent to monocrystalline 6H-SiC.

Pang K H, Tymicki E, Roy A.

Indentation in single-crystal 6H silicon carbide: experimental investigations and finite element analysis

[J]. Int. J. Mech. Sci., 2018, 144: 858

Zhou W B, Su H H, Dai J B, et al.

Numerical investigation on the influence of cutting-edge radius and grinding wheel speed on chip formation in SiC grinding

[J]. Ceram. Int., 2018, 44(17): 21451

[本文引用: 1]

Wu Z H, Liu W D, Zhang L C.

Revealing the deformation mechanisms of 6H-silicon carbide under nano-cutting

[J]. Comput. Mater. Sci., 2017, 137: 282

[本文引用: 1]

Geng R W, Shuang J J, Xie Q M, et al.

Molecular dynamics simulation of removal behavior and subsurface damage mechanism in high-speed nano-grinding of 6H-SiC

[J]. Mach. Tool Hydraul., 2024, 52(21): 191

耿瑞文, 双佳俊, 谢启明 .

6H-SiC高速纳米磨削的去除行为及亚表面损伤机制的分子动力学仿真研究

[J]. 机床与液压, 2024, 52(21): 191

Pan G S, Zhou Y, Luo G H, et al.

Chemical mechanical polishing (CMP) of on-axis Si-face 6H-SiC wafer for obtaining atomically flat defect-free surface

[J]. J. Mater. Sci., 2013, 24(12): 5040

[本文引用: 1]

Huo F W, Guo D M, Kang R K, et al.

Nanogrinding of SiC wafers with high flatness and low subsurface damage

[J]. Trans. Nonferrous Met. Soc. China, 2012, 22(12): 3027

[本文引用: 1]

Liu Y L, Ji Y Q, Dong L G, et al.

Effect of grinding depths on SiC nanogrinding behavior based on molecular dynamics

[J]. Appl. Phys., 2022, 128A: 34

[本文引用: 1]

Tian Z G.

Investigation of material removal mechanism of SiC in nano-scale machining using molecular dynamics simulation

[D]. Liverpool: Liverpool John Moores University, 2021

[本文引用: 1]

Zhao X T, Wang Z Y, Zheng C T, et al.

Effects of different sizes and cutting-edge heights of randomly distributed tetrahedral abrasive grains on 3C–SiC nano grinding

[J]. Mater. Sci. Semicond. Process., 2024, 174: 108150

[本文引用: 1]

Yin L, Vancoille E Y J, Ramesh K, et al.

Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining

[J]. Int. J. Mach. Tools Manuf., 2004, 44(6): 607

[本文引用: 1]

Li W, Yan Q S, Lu J B, et al.

Effect of abrasives on the lapping performance of 6H-SiC single crystal wafer

[J]. Adv. Mater. Res., 2013, 690-693: 2179

[本文引用: 1]

Joo H L, Seung H L, Hee A L, et al.

Effect of different abrasive grain sizes of the diamond grinding wheel on the surface characteristics of GaN

[J]. J. Ceram. Process. Res., 2022: 436

[本文引用: 1]

Wang H X, Gao S, Guo X G, et al.

Atomic Understanding of the plastic deformation mechanism of 4H-SiC under different grain depth-of-cut during nano-grinding

[J]. J. Electron. Mater., 2023, 52(7): 4865

[本文引用: 1]

Zhu B Y, Lv M, Liang G X, et al.

Subsurface damage in high-speed grinding process of monocrystalline silicon based on molecular dynamics

[J]. Tribology, 2017, 37(6): 845

朱宝义, 吕 明, 梁国星 .

单晶硅高速磨削亚表层损伤机制的分子动力学仿真研究

[J]. 摩擦学学报, 2017, 37(6): 845

Guo L, Guo P J, Liu T G, et al.

Molecular dynamics of the grinding and polishing collaborative-processing on monocrystalline silicon

[J]. China Surf. Eng., 2024, 37(2): 199

郭 磊, 郭鹏举, 刘天罡 .

单晶硅磨抛协同加工的分子动力学

[J]. 中国表面工程, 2024, 37(2): 199

Hua D P, Zhou Q, Wang W, et al.

A molecular dynamics simulation on the subsurface damage mechanism in the nano-polishing process of silicon carbide

[J]. J. Mech. Eng., 2024, 60(5): 231

[本文引用: 1]

华东鹏, 周青, 王婉 .

碳化硅纳米抛光亚表面损伤机理的分子动力学模拟

[J]. 机械工程学报, 2024, 60(5): 231

[本文引用: 1]

Xia S W, Zhou H, Xu X M, et al.

Advances in molecular dynamics simulation of nano-manufacturing of monocrystalline materials

[J]. Diamond Abras. Eng., 2018, 38(5): 78

[本文引用: 1]

夏斯伟, 周 海, 徐晓明 .

单晶材料纳米加工的分子动力学模拟研究进展

[J]. 金刚石与磨料磨具工程, 2018, 38(5): 78

[本文引用: 1]

Gao S, Wang H X, Huang H, et al.

Molecular simulation of the plastic deformation and crack formation in single grit grinding of 4H-SiC single crystal

[J]. Int. J. Mech. Sci., 2023, 247: 108147

[本文引用: 1]

Wu N X, Liu D L, Zhong M J, et al.

Analysis of crystal structure transition of polycrystalline 3C-SiC in nanocrystalline grinding based on molecular dynamics simulation

[J]. Solid State Ion., 2023, 399: 116297

[本文引用: 1]

Wu Z H, Zhang L C, Liu W D.

Structural anisotropy effect on the nanoscratching of monocrystalline 6H-silicon carbide

[J]. Wear, 2021, 476: 203677

[本文引用: 1]

Yu D L, Zhang H L, Li B, et al.

Molecular dynamics analysis of friction damage on nano-twin 6 H-SiC surface

[J]. Tribol. Int., 2023, 180: 108223

[本文引用: 1]

Chen M H, Dai H F.

Molecular dynamics study on grinding mechanism of polycrystalline silicon carbide

[J]. Diam. Relat. Mat., 2022, 130: 109541

[本文引用: 2]

Yun Y X, Wu S J, Wang D Z, et al.

Impact of multiple abrasive particles on surface properties of SiC: a molecular dynamics simulation study

[J]. Vacuum, 2024, 230: 113624

[本文引用: 1]

Ban X X, Zhu J H, Sun G N, et al.

Molecular simulation of ultrasonic assisted diamond grit scratching 4H-SiC single-crystal

[J]. Tribol. Int., 2024, 192: 109330

[本文引用: 1]

Wu C J, Li B Z, Liang S Y, et al.

Experimental investigations on cylindrical grinding temperature of silicon carbide

[J]. Adv. Mater. Res., 2015, 1120-1121: 1251

[本文引用: 1]

Wang Q, Fang Q H, Li J, et al.

Subsurface damage and material removal of Al–Si bilayers under high-speed grinding using molecular dynamics (MD) simulation

[J]. Appl. Phys., 2019, 125A(8) : 514

Huang Y H, Zhou Y Q, Li J M, et al.

Understanding of the effect of wear particles removal from the surface on grinding silicon carbide by molecular dynamics simulations

[J]. Diam. Relat. Mat., 2023, 137: 110150

[本文引用: 1]

Zhou P, Li J, Wang Z K, et al.

Molecular dynamics study of the removal mechanism of SiC in a fixed abrasive polishing in water lubrication

[J]. Ceram. Int., 2020, 46(16): 24961

[本文引用: 1]

Goel S, Luo X C, Agrawal A, et al.

Diamond machining of silicon: a review of advances in molecular dynamics simulation

[J]. Int. J. Mach. Tools Manuf., 2015, 88: 131

[本文引用: 1]

Wang S, Zhou Q T, Zhan H M, et al.

Atomic analysis of contact-induced subsurface damage behavior of single crystal SiC based on molecular simulation

[J]. Chin. J. Mater. Res., 2023, 37(12): 943

DOI      [本文引用: 1]

It is helpful to understand the microstructure evolution characteristics and mechanical properties of monocrystalline SiC semiconductor devices during contact from the perspective of atomic scale to understand the microscopic mechanism of subsurface damage behavior and phase transformation. Based on the Vashishta potential function of molecular dynamics, the microscopic evolution characteristics of the nano-indentation induced dislocation rings, the amount of phase transformation and the contact mechanical properties of the corresponding monocrystalline SiC surface were studied, and the effect of extreme service temperature on the subsurface damage behavior and the contact mechanical properties were analyzed. The results show that the plastic deformation of SiC subsurface damage is mainly caused by dislocation nucleation, dislocation accumulation and dislocation slip, whilst the dislocation ring goes through four evolution stages during contact, i.e., dislocation nucleation, dislocation ring growth, dislocation ring reproduction and dislocation ring brittle break. Besides, with the increasing temperature, the maximum bearing capacity, hardness, Young's modulus and contact stiffness curves of silicon carbide materials show a parabolic trend of decline. The main reason is that the higher the temperature is, the SiC lattice is easy to get rid of the bondage of atomic bond energy, resulting in lattice defects, and easy to breed dislocation, which result in the enrichment of stress concentration on subsurface of materials at lastly. As a result, the mechanical properties of SiC materials are greatly reduced while being contacted. In addition, the subsurface stress concentration is also the fundamental reason for the phase transformation from cubic to sphalerite for SiC materials. With the increase of temperature, the amount of phase transformation increases. The dynamic contact plastic deformation and micro-structure evolution of SiC in semiconductor devices under loading, and the phase transformation are significantly dependent on the operating temperature. The rising temperature related change of crystal lattice and the generation of random rough spots on the surface are the main causes of contact adhesion. This study may provide a deeper understand on contact mechanical properties and sub-surface damage behavior at extreme service temperatures, and will also enrich the understanding of the contact failure mechanism of nano silicon carbide.

王 胜, 周俏亭, 占慧敏 .

单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析

[J]. 材料研究学报, 2023, 37(12): 943

[本文引用: 1]

Li P H, Guo X G, Yuan S, et al.

Effects of grinding speeds on the subsurface damage of single crystal silicon based on molecular dynamics simulations

[J]. Appl. Surf. Sci., 2021, 554: 149668

[本文引用: 1]

/