Please wait a minute...
材料研究学报    DOI: 10.11901/1005.3093.2024.355
  本期目录 | 过刊浏览 |
6H-SiC纳米磨削亚表面损伤机理的分子动力学研究
耿瑞文1,杨志豇2,杨蔚华2,谢启明3,游津京3,李立军4,吴海华5
1. 昆明理工大学
2. 三峡大学
3. 昆明物理研究所
4. 三峡大学机械与动力学院
5. 湖北省宜昌市三峡大学
Molecular Dynamics Study on Subsurface Damage Mechanism of 6H-SiC Nano-grinding
引用本文:

耿瑞文 杨志豇 杨蔚华 谢启明 游津京 李立军 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 10.11901/1005.3093.2024.355.

全文: PDF(16838 KB)  
摘要: 深入研究硬脆性6H-SiC材料在纳米磨削过程中的损伤机理对提高6H-SiC元件的表面质量具有重要意义。本文采用分子动力学方法模拟了6H-SiC纳米磨削中的表面变形行为,同时揭示了亚表面损伤机理,并考虑了磨粒尺寸和磨削速度的影响。结果表明:当磨粒尺寸大于4.9 nm时,随着磨削速度的增大,6H-SiC材料去除率先增大后减小,材料去除方式主要以黏附为主。在恒定的磨削速度下,随着磨粒尺寸的增大,6H-SiC工件的亚表面损伤深度、温度和晶格缺陷程度先减小后增大。此外,当磨粒尺寸为5.4 nm时,磨削速度对工件亚表面损伤深度和磨削力的影响更显著。在本文模拟参数下,采用较高的磨削速度和5.4 nm的磨粒可获得更高的加工表面质量。
关键词 纳米磨削表面质量分子动力学模拟亚表面损伤磨粒尺寸磨削速度    
Abstract:In-depth study of the damage mechanism of hard and brittle 6H-SiC materials during the nano-grinding process is of great significance to improving the surface quality of 6H-SiC components. This paper uses molecular dynamics methods to simulate the surface deformation behavior in 6H-SiC nano-grinding, while revealing the subsurface damage mechanism and considering the effects of abrasive grain size and grinding speed. The results show that when the abrasive grain size is larger than 4.9 nm, as the grinding speed increases, the material removal first increases and then decreases, and the removal of 6H-SiC material is primarily based on adhesion. At a constant grinding speed, as the abrasive grain size increases, the subsurface damage depth, temperature, and lattice defect degree of the 6H-SiC workpiece first decrease and then increase. Additionally, the grinding speed has a more significant impact on the subsurface damage depth and grinding force of the workpiece under the abrasive grain size of 5.4 nm. Higher grinding speeds and 5.4 nm abrasive grains can be used to achieve higher machined surface quality within the simulation parameters range.
Key wordsNano-grinding    surface quality    molecular dynamics simulation    subsurface damage    abrasive grain size    grinding speed.
收稿日期: 2024-08-19     
ZTFLH:  TG58  
基金资助:湖北省技术创新专项重大项目;三峡大学人才引进项目;水电机械设备设计与维护湖北省重点实验室开放基金
[1] 刘海涛; 杜伟; 谢胜涛; 刘振宇; 王国栋 . 初始凝固组织对Cr17表面皱折的影响机制[J]. 材料研究学报, 2008, 22(5): 467-472.
[2] 范新会; 李建国; 傅恒志 . 固液界面与单晶连铸表面质量[J]. 材料研究学报, 1999, 13(3): 320-322.
[3] 沙宪伟;张修睦;李依依. NiAl应力诱发马氏体的分子动力学模拟[J]. 材料研究学报, 1997, 11(3): 280-286.
[4] 胡元中;王慧;郭炎;邹鲲;郑林庆. 纳米液体润滑膜的分子动力学模拟──Ⅰ球型分子液体的模拟结果[J]. 材料研究学报, 1997, 11(2): 131-136.
[5] 李小平;韩其勇;刘洪波;陈魁英;胡壮麒. 基于镶嵌原子势的纯Al快速凝固过程分子动力学模拟[J]. 材料研究学报, 1996, 10(4): 368-372.