Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (8): 603-611    DOI: 10.11901/1005.3093.2024.355
  研究论文 本期目录 | 过刊浏览 |
6H-SiC纳米磨削亚表面损伤机理的分子动力学研究
耿瑞文1, 杨志豇2, 杨蔚华2, 谢启明3, 游津京3, 李立军2(), 吴海华1
1.三峡大学 石墨增材制造技术与装备湖北省工程研究中心 宜昌 443002
2.三峡大学机械与动力学院 宜昌 443002
3.昆明物理研究所 昆明 650223
Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles
GENG Ruiwen1, YANG Zhijiang2, YANG Weihua2, XIE Qiming3, YOU Jinjing3, LI Lijun2(), WU Haihua1
1.Hubei Provincial Engineering Research Center for Graphite Additive Manufacturing Technology and Equipment, Three Gorges University, Yichang 443002, China
2.School of Mechanical and Dynamics, Three Gorges University, Yichang 443002, China
3.Kunming Institute of Physics, Kunming 650223, China
引用本文:

耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
Ruiwen GENG, Zhijiang YANG, Weihua YANG, Qiming XIE, Jinjing YOU, Lijun LI, Haihua WU. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. Chinese Journal of Materials Research, 2025, 39(8): 603-611.

全文: PDF(16775 KB)   HTML
摘要: 

应用分子动力学模拟磨削硬脆性6H-SiC纳米材料工件时其表面的变形行为,研究了亚表面的损伤机理以及磨粒尺寸和磨削速度的影响。结果表明:磨粒尺寸大于4.9 nm时,随着磨削速度的提高6H-SiC材料的去除率先提高后降低,去除方式以黏附为主。在磨削速度恒定的条件下,随着磨粒尺寸的增大6H-SiC工件亚表面的温度、损伤深度和晶格缺陷程度先降低后提高。磨粒尺寸为5.4 nm时,磨削速度对工件亚表面的损伤深度和磨削力的影响更为显著。对于本文的模拟参数,采用较高的磨削速度和5.4 nm的磨粒加工表面的质量更高。

关键词 无机非金属材料纳米磨削表面质量分子动力学模拟亚表面损伤磨粒尺寸磨削速度    
Abstract

In-depth study of the damage mechanism of hard and brittle 6H-SiC materials during the grinding process with nano-particles is of great significance to improving the surface quality of 6H-SiC components. In the article, the surface deformation behavior of the bulk 6H-SiC materials during grinding with nano-diamond abrasives was simulated by means of molecular dynamics simulation, while revealing the subsurface damage mechanism and considering the effects of abrasive grain size and grinding speed. The results show that when the abrasive grain size is larger than 4.9 nm, as the grinding speed increases, the material removal first increases and then decreases, and the removal of 6H-SiC material is primarily based on adhesion. By a constant grinding speed, as the abrasive grain size increases, the damage depth, subsurface temperature, and lattice defect degree of the 6H-SiC workpiece first decrease and then increase. Additionally, the grinding speed has much significant impact on the subsurface damage depth and grinding force of the workpiece, for the abrasive grain size is 5.4 nm. It is expected that by adopting 5.4 nm abrasive grains and setting higher grinding speeds,the higher machined surface quality may be achieved within the simulation parameters range.

Key wordsinorganic non-metallic materials    nano-grinding    surface quality    molecular dynamics simulation    subsurface damage    abrasive grain size    grinding speed
收稿日期: 2024-08-19     
ZTFLH:  TN304  
基金资助:湖北省技术创新专项重大项目(2019AAA164);三峡大学人才引进项目(2022Y0037);水电机械设备设计与维护湖北省重点实验室开放基金(2023KJX04)
通讯作者: 李立军,教授,llj@ctgu.edu.com,研究方向为超精密加工工艺与装备
Corresponding author: LI Lijun, Tel: 15997659483, E-mail: llj@ctgu.edu.com
作者简介: 耿瑞文,男,1993年生
图1  6H-SiC的纳米磨削模拟模型
ParameterValue

Workpiece dimension

Grinding direction

25 nm × 13 nm × 16 nm

1¯ 0 0

Grinding speed / m·s-150、100、200
Grinding depth / nm0.15
Tool radius / nm4.9、5.4、5.9
Timestep / ps0.001
Initial temperature / K300
EnsembleNVT, NVE
表1  纳米磨削模拟参数
图2  6H-SiC工件纳米磨削后的表面形貌
图3  6H-SiC工件不同磨削速度和磨粒尺寸研究下的切屑原子数量和非晶原子数量
图4  不同磨削速度和磨粒尺寸条件下6H-SiC工件的亚表面损伤深度
图5  不同磨削速度和磨粒尺寸条件下6H-SiC工件亚表面中的相变
图6  径向分布函数:(a)不同纳米磨削阶段、(b)不同磨削速度、(c)不同磨粒尺寸
图7  不同磨削速度和磨粒尺寸研究下6H-SiC工件的温度分布
图8  不同磨削速度和磨粒尺寸条件下的最大Von Mises应力
图9  不同磨削速度和磨粒尺寸条件下6H-SiC工件的Von Mises应力分布
图10  不同磨削速度和磨粒尺寸条件下的切向磨削力
图11  不同磨削速度和磨粒尺寸条件下的法向磨削力
图12  不同磨削速度和磨粒尺寸条件下6H-SiC工件的摩擦系数
[1] Wu Z H, Zhang L C. Mechanical properties and deformation mechanisms of surface-modified 6H-silicon carbide [J]. J. Mater. Sci. Technol., 2021, 90: 58
doi: 10.1016/j.jmst.2021.02.028
[2] Pang K H, Tymicki E, Roy A. Indentation in single-crystal 6H silicon carbide: experimental investigations and finite element analysis [J]. Int. J. Mech. Sci., 2018, 144: 858
[3] Zhou W B, Su H H, Dai J B, et al. Numerical investigation on the influence of cutting-edge radius and grinding wheel speed on chip formation in SiC grinding [J]. Ceram. Int., 2018, 44(17): 21451
[4] Wu Z H, Liu W D, Zhang L C. Revealing the deformation mechanisms of 6H-silicon carbide under nano-cutting [J]. Comput. Mater. Sci., 2017, 137: 282
[5] Geng R W, Shuang J J, Xie Q M, et al. Molecular dynamics simulation of removal behavior and subsurface damage mechanism in high-speed nano-grinding of 6H-SiC [J]. Mach. Tool Hydraul., 2024, 52(21): 191
[5] 耿瑞文, 双佳俊, 谢启明 等. 6H-SiC高速纳米磨削的去除行为及亚表面损伤机制的分子动力学仿真研究 [J]. 机床与液压, 2024, 52(21): 191
[6] Pan G S, Zhou Y, Luo G H, et al. Chemical mechanical polishing (CMP) of on-axis Si-face 6H-SiC wafer for obtaining atomically flat defect-free surface [J]. J. Mater. Sci., 2013, 24(12): 5040
[7] Huo F W, Guo D M, Kang R K, et al. Nanogrinding of SiC wafers with high flatness and low subsurface damage [J]. Trans. Nonferrous Met. Soc. China, 2012, 22(12): 3027
[8] Liu Y L, Ji Y Q, Dong L G, et al. Effect of grinding depths on SiC nanogrinding behavior based on molecular dynamics [J]. Appl. Phys., 2022, 128A: 34
[9] Tian Z G. Investigation of material removal mechanism of SiC in nano-scale machining using molecular dynamics simulation [D]. Liverpool: Liverpool John Moores University, 2021
[10] Zhao X T, Wang Z Y, Zheng C T, et al. Effects of different sizes and cutting-edge heights of randomly distributed tetrahedral abrasive grains on 3C–SiC nano grinding [J]. Mater. Sci. Semicond. Process., 2024, 174: 108150
[11] Yin L, Vancoille E Y J, Ramesh K, et al. Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining [J]. Int. J. Mach. Tools Manuf., 2004, 44(6): 607
[12] Li W, Yan Q S, Lu J B, et al. Effect of abrasives on the lapping performance of 6H-SiC single crystal wafer [J]. Adv. Mater. Res., 2013, 690-693: 2179
[13] Joo H L, Seung H L, Hee A L, et al. Effect of different abrasive grain sizes of the diamond grinding wheel on the surface characteristics of GaN [J]. J. Ceram. Process. Res., 2022: 436
[14] Wang H X, Gao S, Guo X G, et al. Atomic Understanding of the plastic deformation mechanism of 4H-SiC under different grain depth-of-cut during nano-grinding [J]. J. Electron. Mater., 2023, 52(7): 4865
[15] Zhu B Y, Lv M, Liang G X, et al. Subsurface damage in high-speed grinding process of monocrystalline silicon based on molecular dynamics [J]. Tribology, 2017, 37(6): 845
[15] 朱宝义, 吕 明, 梁国星 等. 单晶硅高速磨削亚表层损伤机制的分子动力学仿真研究 [J]. 摩擦学学报, 2017, 37(6): 845
[16] Guo L, Guo P J, Liu T G, et al. Molecular dynamics of the grinding and polishing collaborative-processing on monocrystalline silicon [J]. China Surf. Eng., 2024, 37(2): 199
[16] 郭 磊, 郭鹏举, 刘天罡 等. 单晶硅磨抛协同加工的分子动力学 [J]. 中国表面工程, 2024, 37(2): 199
[17] Hua D P, Zhou Q, Wang W, et al. A molecular dynamics simulation on the subsurface damage mechanism in the nano-polishing process of silicon carbide [J]. J. Mech. Eng., 2024, 60(5): 231
[17] 华东鹏, 周青, 王婉 等. 碳化硅纳米抛光亚表面损伤机理的分子动力学模拟[J]. 机械工程学报, 2024, 60(5): 231
[18] Xia S W, Zhou H, Xu X M, et al. Advances in molecular dynamics simulation of nano-manufacturing of monocrystalline materials [J]. Diamond Abras. Eng., 2018, 38(5): 78
[18] 夏斯伟, 周 海, 徐晓明 等. 单晶材料纳米加工的分子动力学模拟研究进展 [J]. 金刚石与磨料磨具工程, 2018, 38(5): 78
[19] Gao S, Wang H X, Huang H, et al. Molecular simulation of the plastic deformation and crack formation in single grit grinding of 4H-SiC single crystal [J]. Int. J. Mech. Sci., 2023, 247: 108147
[20] Wu N X, Liu D L, Zhong M J, et al. Analysis of crystal structure transition of polycrystalline 3C-SiC in nanocrystalline grinding based on molecular dynamics simulation [J]. Solid State Ion., 2023, 399: 116297
[21] Wu Z H, Zhang L C, Liu W D. Structural anisotropy effect on the nanoscratching of monocrystalline 6H-silicon carbide [J]. Wear, 2021, 476: 203677
[22] Yu D L, Zhang H L, Li B, et al. Molecular dynamics analysis of friction damage on nano-twin 6 H-SiC surface [J]. Tribol. Int., 2023, 180: 108223
[23] Chen M H, Dai H F. Molecular dynamics study on grinding mechanism of polycrystalline silicon carbide [J]. Diam. Relat. Mat., 2022, 130: 109541
[24] Yun Y X, Wu S J, Wang D Z, et al. Impact of multiple abrasive particles on surface properties of SiC: a molecular dynamics simulation study [J]. Vacuum, 2024, 230: 113624
[25] Ban X X, Zhu J H, Sun G N, et al. Molecular simulation of ultrasonic assisted diamond grit scratching 4H-SiC single-crystal [J]. Tribol. Int., 2024, 192: 109330
[26] Wu C J, Li B Z, Liang S Y, et al. Experimental investigations on cylindrical grinding temperature of silicon carbide [J]. Adv. Mater. Res., 2015, 1120-1121: 1251
[27] Wang Q, Fang Q H, Li J, et al. Subsurface damage and material removal of Al–Si bilayers under high-speed grinding using molecular dynamics (MD) simulation [J]. Appl. Phys., 2019, 125A(8) : 514
[28] Huang Y H, Zhou Y Q, Li J M, et al. Understanding of the effect of wear particles removal from the surface on grinding silicon carbide by molecular dynamics simulations [J]. Diam. Relat. Mat., 2023, 137: 110150
[29] Zhou P, Li J, Wang Z K, et al. Molecular dynamics study of the removal mechanism of SiC in a fixed abrasive polishing in water lubrication [J]. Ceram. Int., 2020, 46(16): 24961
[30] Goel S, Luo X C, Agrawal A, et al. Diamond machining of silicon: a review of advances in molecular dynamics simulation [J]. Int. J. Mach. Tools Manuf., 2015, 88: 131
[31] Wang S, Zhou Q T, Zhan H M, et al. Atomic analysis of contact-induced subsurface damage behavior of single crystal SiC based on molecular simulation [J]. Chin. J. Mater. Res., 2023, 37(12): 943
doi: 10.11901/1005.3093.2023.126
[31] 王 胜, 周俏亭, 占慧敏 等. 单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析 [J]. 材料研究学报, 2023, 37(12): 943
[32] Li P H, Guo X G, Yuan S, et al. Effects of grinding speeds on the subsurface damage of single crystal silicon based on molecular dynamics simulations [J]. Appl. Surf. Sci., 2021, 554: 149668
[1] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[2] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[3] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[4] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[5] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[6] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[7] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[8] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[9] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[10] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[11] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[12] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[13] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[14] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[15] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.