Please wait a minute...
Chin J Mater Res  2004, Vol. 18 Issue (1): 60-60    DOI:
Research Articles Current Issue | Archive | Adv Search |
Effect of surface characteristics of carbon fiber on immobilization of facultative and anaerobic aerobes
;
北京化工大学材料科学与工程学院
Cite this article: 

;. Effect of surface characteristics of carbon fiber on immobilization of facultative and anaerobic aerobes. Chin J Mater Res, 2004, 18(1): 60-60.

Download:  PDF(1526KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Different oxygenic functional groups and their content on the surface of CF influence distinctly average thickness of immobilized biofilm. Proper content of surface oxygenic functional groups and proper moisture, obtained by modifying the surface of polyacrylonitrile(PAN)-CF, are beneficial to immobinization of by denitrifying microorganism. Anaerobic methane bacteria can immobilize the surface of CF easier compared to the surface of plastics with similar moisture. And with the increase in element content of nitrgen and oxygen on th e surface of CF, its moisture increases and immobilized ability for methane bacteria weakens. The experiment showes that PAN-based high strength CF modified by air of high temperature is a kind of high quality carrier with good biocompatibility, highly immobilized ability and resisting chemical erosion, decomposition of microorganism and strong hydraulic impaction for denitrifying biofilm. PAN-based high strength CF, however, which hasn't be treated, is a high quality carrier for anaerobic methane bacteria.
Key words:  inorganic non-metallic materials      carbon fiber(CF)      surface functional groups      biofilm      immobilization      
Received:  08 September 2003     
ZTFLH:  TB321  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2004/V18/I1/60

1 Shen Yaoliang(沈耀良), Pollution Control Technology (污染防治技术), 8(1) , 12(1995)
2 C.Y.Chen, S.D.Chen, Wat.Sci.Technol., 41(4) , 147(2000)
3 LIU Jie(刘杰), HE Zhenkun(何振坤), WANG Shaotang(王绍堂), ZHAO Xingli(赵兴利), New Carbon Materials(新型碳材料), 6(3) , 10(2002)
4 Akira Kojima(小岛昭), Makoto Satoh(佐藤诚), Journal of The Materials Science Society of Japan(Japanese)(材料科学), 35(6) , 25(1998)
5 Sugio. Otani(大谷杉郎), TANSO (Japanese) (炭素), 194, 276(2000)
6 A.S.R.Pauss, Guiot, Water Environ. Res., 65, 276(1993)
7 R.E.Speece[American](R.E.斯皮思), Translated by Li Yaxin (李亚新译) (Beijing, China Architecture & Building Press, 2001) p.130-175
8 M.Kuroda, M.Yuzawa, Y.Sakakibara, M.Okamura, Water Reseach, 22(5) , 653(1988)
9 HP Bohem, Carbon, 32(5) , 759(1994)
10 LIU Yu(刘雨), ZHAO Qingliang(赵庆良), ZHENG Xingcan(郑兴灿), Treated Technology for Wastewaters by Biofilm (生物膜法污水处理技术) (Beijing, China Architecture & Building Press, 2000) p.14-46
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!