Please wait a minute...
Chin J Mater Res  2008, Vol. 22 Issue (6): 623-628    DOI:
论文 Current Issue | Archive | Adv Search |
Polyaluminocarbosilane prepared with fillings as precursors for SiC(Al) fibers
Zhao Dafang; Li Xiaodong; Zheng Chunman
Key Lab of Ceramic Fiber and Composites; National University of Defense Technology; Changsha 410073
Cite this article: 

Zhao Dafang Li Xiaodong Zheng Chunman. Polyaluminocarbosilane prepared with fillings as precursors for SiC(Al) fibers. Chin J Mater Res, 2008, 22(6): 623-628.

Download:  PDF(932KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Polyaluminocarbosilane(PACS) was synthesized by a reaction between polysilacarbosilane and  aluminum acetylacetonate at ambient pressure in N2. A reactor with a high temperature pyrolysis equipment which was filled with fillings was used, so PACS can be prepared for shorter reaction  time. Comparing with the PACS synthesized without fillings, its Mn increased from 1008 to 2436,  its molecular distribution was narrower, and its –Si–Si– bonds content decreased. Moreover,  ceramic yield of the obtained PACS at 1200℃ in N2 was increased from 65% to 69% when it was  synthesized with fillings. It is suggested that the translation from –Si–Si– bonds to –Si–C– bonds  was facilitated when the filling existed. The PACS is spinnability. Lower mass was gotten during  air curing process. The tensile strength of the obtained Si–Al–C–O fiber is 2.1 GPa. A densified  SiC(Al) fiber was obtained after been heated at 1800 ℃ in Ar.

Key words:  inorganic non-metallic materials      Polyaluminocarbosilane      SiC fibers      preceramic polymer     
Received:  18 February 2008     
ZTFLH: 

TQ343

 

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2008/V22/I6/623

1 S.Yajima, J.hayashi, K.Okamura, Pyrolysis of a Polyborodiphenylsiloxane, Nature, 266, 521(1977)
2 CHENG Xiangzheng, XIE Zhengfang, SONG Yongcai, XIAO Jiayu, Infulence of reaction temperature on the properties of polycarbosilane synthesized from polydimethylsilane under high pressure, Acta Polymerica Sinica, 851(2005)
(程祥珍, 谢征芳, 宋永才, 肖加余,反应温度对聚二甲基硅烷高压合成聚碳硅烷性能的影响,高分子学报, 851(2005))
3 H.Ichikawa, F.Machino, S.Mitsuno, T.Ishikawa, K.Okamura, Y.Hasigawa, Synthesis of continuous silicon carbide fibre. Part 5. Factors affecting stability of polycarbosilane to oxidation, Journal of Materials Science, 21, 4352 (1986)
4 T.Ishikawa, Recent developments of the SiC fiber Nicalon and its composites, including properties of the SiC fiber Hi–Nicalon for ultra–high temperature, Composites Science and Technology, 51, 135(1994)
5 M.Takeda, J.I.Sakamoto, Y.Imai, H.Ichikawa, Thermal stability of the low-oxygen-content silicon carbide fiber, Hi-NicalonTM, Composites Science and Technology, 59, 813(1999)
6 M.Takeda, Y.Imai, H.Ichikawa, N.Kasai, T.Seguchi, K.Okamura, Thermal stability of SiC fiber prepared by an irradiation- curing process, Composites Science and Technology, 59, 793(1999)
7 K.Suzuki, K.Kumagama, T.Kamiyama, M.Shibuya, Characterization of the medium–range structure of Si–Al–C–O, Si–Zr–C–O and Si–Al–C Tyranno fibers by small angle Xray scattering, Journal of Materials Science, 37, 949(2002)
8 E.Vanswijgenhoven, K.Lambrinou, M.Wevers, O.V.D.Biest, Comparative study of the surface roughness of Nicalon and Tyranno silicon carbide fibres, Composites Part A, 29A, 1417(1998)
9 W.Yang, H.Araki, A.Kohyama, Q.Hul, Growing SiC nanowires on Tyranno-SA sic fibers, Journal of the American Ceramic Society, 87, 733(2004)
10 S.Dong, Y.Katoh, A.Kohyama, Processing optimization and mechanical evaluation of hot pressed 2D Tyranno– SA/SiC composites, Journal of the European Ceramic Society, 23, 1223(2003)
11 T.Ishikawa, Y.Kohtoku, K.Kumagawa, T.Yamamura, T.Nagasawa, High-strength alkali-resistant sinteredSiC fibre stable to 2,200 C, Nature, 391, 773(1998)
12 K.Morishitaw, S.Ochiai, H.Okuda, T.Inshikawa, M.Sato, T.Inoue, Fracture toughness of a crystalline silicon carbide fiber (Tyranno-SA3), Journal of American Ceramic Society, 89, 2571-2576(2006)
13 F.Cao, X.D.Li, P.Peng, C.X.Feng, J.Wang, D.P.Kim, Structural evolution and associated properties on conversion from Si–C–O–Al ceramic fibers to Si–C–Al fibers by sintering, Journal of Material Chemistry, 12, 606(2002)
14 D.F.Zhao, X.D.Li, C.M.Zheng, T.J.Hu, Production mechanism of polyaluminocarbosilane using aluminum acetylacetonate with polysilacarbosilane, Journal of University of Science and Technology Beijing, 29, 130(2007)
15 S.Yajima, Y.Hasegawa, J.Hayashi, M.Iimura, Synthesis of continuous silicon carbide fiber with high tensile strength and high Yong’s modulus part 1 Synthesis of polycarbosilane as precursor, Journal of Materials Science, 13, 2569 (1978)
16 H.Q.Ly, R.Taylor, R.J.Day, F.Heatley, Conversion of polycarbosilane (PCS) to SiC-based ceramic Part 1. Characterisation of PCS and Curing Products, Journal of Materials science, 36, 4037(2001)
17 Y.Hasegawa, K.Okamura, Synthesis of continuous silicon carbide fibre part 3 Pyrolysis process of polycarbosilane and structure of the products, Journal of Materials science, 18, 3633(1983)
18 ZHENG Chunman, ZHU Bin, LI Xiaodong, WANG Yifei, Study on thermal-curing of polycarbosilane fibers, Acta Polymerica Sinica, 246(2004)
(郑春满, 朱冰, 李效东, 王亦菲, 聚碳硅烷纤维的热交联研究, 高分子学报, 246(2004))
19 M.Narisawa, K.Shimoda, M.Nishioka, T.Iseki, H.Mabuchi, K.Okamura, T.Dohmaru. Silicon carbide base ceramic fibers synthesis from polycarbosilane– polymethylsilane blend polymers by melt spinning, Journal of the Ceramic Society of Japan, 114, 511(2006)

[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!