Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (5): 329-342    DOI: 10.11901/1005.3093.2024.085
ARTICLES Current Issue | Archive | Adv Search |
Degradation of RhB by MIL-88A (Fe) Activated Persulfate under Simulated Sunlight: Effect of Solvent-thermal Duration on Catalytic Performance
REN Xuechang(), AN Ju, FU Ning, YAO Xiaoqing, YANG Zhenyu, CHEN Hongjin
School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Cite this article: 

REN Xuechang, AN Ju, FU Ning, YAO Xiaoqing, YANG Zhenyu, CHEN Hongjin. Degradation of RhB by MIL-88A (Fe) Activated Persulfate under Simulated Sunlight: Effect of Solvent-thermal Duration on Catalytic Performance. Chinese Journal of Materials Research, 2025, 39(5): 329-342.

Download:  HTML  PDF(11880KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Six different MIL-88A (Fe) samples were synthesized by one-step solvothermal method for different reaction times (named M-4, M-8, M-12, M-16, M-20, M-24) and characterized by SEM, XRD, FT-IR, BET, UV-vis DRS, XPS and EIS. A variety of MIL-88A (Fe) catalytically activated peroxymonosulfate was used to degrade Rhodamine B solution under xenon lamp irradiation (500 W), as a simulated sunlight. Meanwhile the effect of solvent heating time on its catalytic performance was studied, and the reaction mechanism and influencing factors were analyzed. The results show that the variation of crystal morphology follows a process of “nucleation-aggregation-solution-recrystallization” with the increase of solvothermal time. The morphology of MIL-88A (Fe) is greatly affected by different solvent thermal duration. Fe―O clusters are formed between inorganic metal and carboxyl group of fumaric acid, and the REDOX conversion between Fe3+ and Fe2+ is active. The catalyst M-12 crystal prepared with a solvothermal duration of 12 h has the largest aspect ratio (3.33). There are more defects and unsaturated coordination sites at the junction of iron ions and organic ligands on its surface, and it has the strongest photocurrent response, the largest photogenerated electron-hole separation efficiency, the lowest electron transfer resistance and the highest conductivity, therewith, the best photocatalytic activity. In the M-12/PMS/artificial sun light system, the degradation rate of RhB (20 mg/L) reached 99.33% within 60 min, the system has a wide pH adaptation range and low influence of inorganic anions, moreover, ·OH, SO4- and h+ are the main active free radicals, while 1O2 and ·O2- play a role in assisting RhB degradation. The active free radicals are derived from three pathways: direct activation, direct activation by electron transfer and indirect activation by electron transfer. In the cyclic experiments, M-12/PMS/Light system has maintained an efficient removal rate of more than 90% for RhB, the sample structure and catalytic performance are stable, and the reusability is high, which has a good application prospect.

Key words:  metallic material      MIL-88A (Fe)      solvothermal duration      photo-Fenton      characterization analysis      RhB     
Received:  22 February 2024     
ZTFLH:  TB31  
Fund: the Young Scholars Science Foundation of Lanzhou Jiaotong University(2022044)
Corresponding Authors:  REN Xuechang, Tel: 17693109113, E-mail: rxchang1698@hot mail.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.085     OR     https://www.cjmr.org/EN/Y2025/V39/I5/329

Fig.1  Preparation process of MIL-88A(Fe) with different hydrothermal duration
Fig.2  SEM images of MIL-88A(Fe) with different hydrothermal duration
Fig.3  XRD patterns of MIL-88A(Fe) with different hydrothermal duration
Fig.4  FT-IR spectra of MIL-88A(Fe) with different hydrothermal duration
Fig.5  N2 adsorption/desorption isotherms (a, b) and pore size distribution curves (c, d) of MIL-88A(Fe) with different hydrothermal duration
CatalystSBET / m2·g-1Vp / cm3·g-1Dp / nmUnit reaction rate constant / min-1·m-2
M-4153.670.1141.360.364 × 10-3
M-8140.130.0961.490.441 × 10-3
M-1292.800.0721.560.938 × 10-3
M-16126.280.0791.250.657 × 10-3
M-20152.020.0861.130.387 × 10-3
M-24226.320.1621.440.164 × 10-3
Table 1  Specific surface area, pore volume, pore size and unit reaction rate constant of MIL-88A(Fe) with different solvent thermal duration
Fig.6  UV-Vis DRS spectra (a, b) and band gap width representation (c, d) of MIL-88A(Fe) with different solvent thermal durations
Fig.7  XPS spectra of M-12 before and after reaction (a) full spectrum; (b) XPS spectra of C 1s; (c) XPS spectra of O 1s; (d) XPS spectra of Fe 2p
Fig.8  Photocurrent transient response diagram (a, b) and EIS spectrum diagram (c, d) of MIL-88A(Fe) with different solvent thermal duration
Fig.9  Effect of addition of PMS on RhB degradation of MIL-88A(Fe) prepared with different solvent thermal duration under light (a, b), no light (c, d) and light (e, f) conditions
Fig.10  Effects of M-12 dosage on the degradation efficiency (a) and reaction rate (b) of RhB
Fig.11  Effects of PMS dosage on the degradation efficiency (a) and reaction rate (b) of RhB
Fig.12  Influence of pH value on the degradation efficiency (a) and reaction rate (b) of RhB
Fig.13  Effects of M-12 inorganic anion on RhB degradation
Fig.14  Cycle stability of M-12 sample
Fig.15  Effects of free radical quenching on the degradation efficiency (a) and reaction rate (b) of RhB
Fig.16  RhB degradation mechanism in M-12/PMS/light system
1 Sharma A, Ahmad J, Flora S J S. Application of advanced oxidation processes and toxicity assessment of transformation products [J]. Environ. Res., 2018, 167: 223
doi: S0013-9351(18)30374-8 pmid: 30055452
2 Mahbub P, Duke M. Scalability of advanced oxidation processes (AOPs) in industrial applications: a review [J]. J. Environ. Manage., 2023, 345: 118861
3 Arifin M N, Jusoh R, Abdullah H, et al. Recent advances in advanced oxidation processes (AOPs) for the treatment of nitro- and alkyl-phenolic compounds [J]. Environ. Res., 2023, 229: 115936
4 M'Arimi M M, Mecha C A, Kiprop A K, et al. Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: review [J]. Renew. Sustain. Energy Rev., 2020, 121: 109669
5 Savia F, Adesina A O, Carena L, et al. Assessment of Fenton systems based on metabisulphite as a low-cost alternative to hydrogen peroxide [J]. J. Environ. Chem. Eng., 2023, 11(5): 110707
6 Roy K, Moholkar V S. Sulfadiazine degradation using hybrid AOP of heterogeneous Fenton/persulfate system coupled with hydrodynamic cavitation [J]. Chem. Eng. J., 2020, 386: 121294
7 Dong C C, Fang W Z, Yi Q Y, et al. A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs) [J]. Chemosphere, 2022, 308: 136205
8 Lai L D, He Y L, Zhou H Y, et al. Critical review of natural iron-based minerals used as heterogeneous catalysts in peroxide activation processes: characteristics, applications and mechanisms [J]. J. Hazard. Mater., 2021, 416: 125809
9 He J, Yang X F, Men B, et al. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: a review [J]. J. Environ. Sci., 2016, 39: 97
10 Li Z Z, Shen C S, Liu Y B, et al. Carbon nanotube filter functionalized with iron oxychloride for flow-through electro-Fenton [J]. Appl. Catal., 2020, 260B: 118204
11 Wang N N, Zheng T, Zhang G S, et al. A review on Fenton-like processes for organic wastewater treatment [J]. J. Environ. Chem. Eng., 2016, 4(1): 762
12 Wang X, Li Y X, Yi X H, et al. Photocatalytic Cr(VI) elimination over BUC-21/N-K2Ti4O9 composites: big differences in performance resulting from small differences in composition [J]. Chin. J. Catal., 2021, 42(2): 259
doi: 10.1016/S1872-2067(20)63629-4
13 Assen A H, Belmabkhout Y, Adil K, et al. Advances on CO2 storage. Synthetic porous solids, mineralization and alternative solutions [J]. Chem. Eng. J., 2021, 419: 129569
14 Langmi H W, Ren J W, North B, et al. Hydrogen storage in metal-organic frameworks: a review [J]. Electrochim. Acta, 2014, 128: 368
15 Dai X, Cao Y, Shi X W, et al. The PLA/ZIF-8 nanocomposite membranes: the diameter and surface roughness adjustment by ZIF-8 nanoparticles, high wettability, improved mechanical property, and efficient oil/water separation [J]. Adv. Mater. Interfaces, 2016, 3: 1600725
16 Yang C, Zhu Y M, Wang J, et al. A novel granular MOF composite with dense and ordered MIL-100(Fe) nanoparticles grown on porous alumina: green synthesis and enhanced adsorption of tetracycline hydrochloride [J]. Chem. Eng. J., 2021, 426: 131724
17 Ren X C, Yang Z Y, Feng H, et al. Influence of preparation process parameters on relative amount of two-phase 1T/2H and performance of WS2 [J]. Chin. J. Mater. Res., 2024, 38(10): 791
任学昌, 杨镇瑜, 冯 浩 等. 制备条件对WS2中1T/2H相的影响 [J]. 材料研究学报, 2024, 38(10): 791
doi: 10.11901/1005.3093.2023.488
18 Serre C, Mellot-Draznieks C, Surblé S, et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks [J]. Science, 2007, 315: 1828
pmid: 17395825
19 Wang F X, Wang C C. Fabrication approaches and organic pollutants degradation performances via advanced oxidation processes of MIL-88A(Fe) and its composites [J]. Res. Environ. Sci., 2021, 34(12): 2924
王茀学, 王崇臣. 金属-有机骨架MIL-88A(Fe)及其复合物的合成与高级氧化降解水体有机污染物的研究进展 [J]. 环境科学研究, 2021, 34(12): 2924
20 Tan S R, Yao C, Liu Z C, et al. Fabrication of metal organic framework Zn-BTC/rGO nanocomposites with different morphologies and their supercapacitor performance [J]. Chin. J. Mater. Res., 2024, 38(8): 576
谭上荣, 姚 焯, 刘泽辰 等. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能 [J]. 材料研究学报, 2024, 38(8): 576
doi: 10.11901/1005.3093.2023.446
21 Wang J L, Wang S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants [J]. Chem. Eng. J., 2018, 334: 1502
22 Yi X H, Wang C C. Elimination of emerging organic contaminants in wastewater by advanced oxidation process over iron-based MOFs and their composites [J]. Prog. Chem., 2021, 33(3): 471
doi: 10.7536/PC200562
衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物 [J]. 化学进展, 2021, 33(3): 471
doi: 10.7536/PC200562
23 Gao C, Chen S, Quan X, et al. Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants [J]. J. Catal., 2017, 356: 125
24 Wang S Y, An W J, Lu J R, et al. A Cu/CuFe2O4-OVs two-electron centre-based synergistic photocatalysis-Fenton system for efficient degradation of organic pollutants [J]. Chem. Eng. J., 2022, 441: 135944
25 Chen G Y, Yu Y, Liang L, et al. Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: a critical review [J]. J. Hazard. Mater., 2021, 408: 124461
26 O’Keeffe M. Design of MOFs and intellectual content in reticular chemistry: a personal view [J]. Chem. Soc. Rev., 2009, 38(5): 1215
doi: 10.1039/b802802h pmid: 19384432
27 Bagherzadeh E, Zebarjad S M, Madaah Hosseini H R, et al. Interplay between morphology and band gap energy in Fe-MIL-88A prepared via a high temperature surfactant-assisted solvothermal method [J]. Mater. Chem. Phys., 2022, 277: 125536
28 Wang H Y, Zhang C, Zheng L J, et al. Activation of peroxydisulfate by MIL-88A(Fe) under visible light toward tetracycline degradation: effect of synthesis temperature on catalytic performance [J]. J. Solid State Chem., 2023, 323: 124051
29 Zhao S Y, Li Y H, Wang M Z, et al. Preparation of MIL-88A micro/nanocrystals with different morphologies in different solvents for efficient removal of Congo red from water: synthesis, characterization, and adsorption mechanisms [J]. Micropor. Mesopor. Mater., 2022, 345: 112241
30 Duan J G, Li Y S, Pan Y C, et al. Metal-organic framework nanosheets: an emerging family of multifunctional 2D materials [J]. Coord. Chem. Rev., 2019, 395: 25
31 Dhakshinamoorthy A, Asiri A M, Garcia H. 2D metal-organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis [J]. Adv. Mater., 2019, 31(41): 1900617
32 Viswanathan V P, Mathew S V, Dubal D P, et al. Exploring the effect of morphologies of Fe(III) metal-organic framework MIL-88A(Fe) on the photocatalytic degradation of rhodamine B [J]. ChemistrySelect, 2020, 5: 7534
doi: 10.1002/slct.202001670
33 Liao X Y, Wang F, Wang F, et al. Synthesis of (100) surface oriented MIL-88A-Fe with rod-like structure and its enhanced fenton-like performance for phenol removal [J]. Appl. Catal., 2019, 259B: 118064
34 Chen D D, Yi X H, Ling L, et al. Photocatalytic Cr(VI) sequestration and photo-Fenton bisphenol A decomposition over white light responsive PANI/MIL-88A(Fe) [J]. Appl. Organomet. Chem., 2020, 34: e5795
35 Zhang S P, Zhuo Y F, Ezugwu C I, et al. Synergetic molecular oxygen activation and catalytic oxidation of formaldehyde over defective MIL-88B(Fe) nanorods at room temperature [J]. Environ. Sci. Technol., 2021, 55: 8341
36 Huo W T, Wang M L, Wei H, et al. Rational construction of visible-light-driven MIL-88A(Fe)@PMo12 heterojunction with S-scheme electron transfer pathway to activate peroxymonosulfate for degradation of organic pollutants [J]. Appl. Surf. Sci., 2023, 639: 158199
37 Jing J J, Liu Y, Jing L Q, et al. A novel Bi3.64Mo0.36O6.55/MIL-88A(Fe) nanorod composite material for enhancing photocatalytic activity in photo-Fenton system [J]. Colloids Surf., 2022, 654A: 130116
38 Tan Q Y, Yu Z X, Xiang Q C, et al. Photo-Fenton properties of MIL-88A(Fe)/Ti3C2 MXene with tunable active crystal facets: universal for degradation of common pollutants in wastewater [J]. Process Saf. Environ. Prot., 2023, 179: 405
39 Zhang Y, Zhou J B, Chen X, et al. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway [J]. Chem. Eng. J., 2019, 369: 745
doi: 10.1016/j.cej.2019.03.108
40 Yang H C, Zhang S W, Cao R Y, et al. Constructing the novel ultrafine amorphous iron oxyhydroxide/g-C3N4 nanosheets heterojunctions for highly improved photocatalytic performance [J]. Sci. Rep., 2017, 7: 8686
41 Lin K Y A, Chang H A, Hsu C J. Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water [J]. RSC Adv., 2015, 5: 32520
42 Gao Y W, Li S M, Li Y X, et al. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate [J]. Appl. Catal., 2017, 202B: 165
43 Liu N, Huang W Y, Zhang X D, et al. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB [J]. Appl. Catal., 2018, 221B: 119
44 Huang W Y, Jing C W, Zhang X D, et al. Integration of plasmonic effect into spindle-shaped MIL-88A(Fe): steering charge flow for enhanced visible-light photocatalytic degradation of ibuprofen [J]. Chem. Eng. J., 2018, 349: 603
45 Roy D, Neogi S, De S. Mechanistic investigation of photocatalytic degradation of Bisphenol-A using MIL-88A(Fe)/MoS2 Z-scheme heterojunction composite assisted peroxymonosulfate activation [J]. Chem. Eng. J., 2022, 428: 131028
46 Ding S Y, Ren X C, Chen R H, et al. Efficient degradation of Phenol by 1T/2H-MoS2/CuFe2O4 activated peroxymonosulfate and mechanism research [J]. Appl. Surf. Sci., 2023, 612: 155931
47 Zhang Y J. The study on refractory organic pollutants degradation by photocatalytic activated peroxymonosulfate using graphite phase carbon nitride - based material [D]. Lanzhou: Lanzhou Jiaotong University, 2022
张玉杰. 石墨相氮化碳基材料光催化活化过一硫酸盐去除难降解有机污染物的研究 [D]. 兰州: 兰州交通大学, 2022
48 Lai L D, Ji H D, Zhang H, et al. Activation of peroxydisulfate by V-Fe concentrate ore for enhanced degradation of carbamazepine: surface ≡V(III) and ≡V(IV) as electron donors promoted the regeneration of ≡Fe(II) [J]. Appl. Catal., 2021, 282B: 119559
49 Xu Y, Ai J, Zhang H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process [J]. J. Hazard. Mater., 2016, 309: 87
doi: 10.1016/j.jhazmat.2016.01.023 pmid: 26875144
50 Li H R, Tian J Y, Xiao F, et al. Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity [J]. J. Hazard. Mater., 2020, 385: 121518
51 Ding Q, Zou X J, Ke J, et al. Enhanced artificial nitrogen fixation efficiency induced by construction of ternary TiO2/MIL-88A(Fe)/g-C3N4 Z-scheme heterojunction [J]. J. Colloid Interface Sci., 2023, 649: 148
[1] QIU Wei, LI Yulin, YAN Rui, LI Yawen, CHEN Wei, GAN Lang, REN Yanjie, CHEN Jian. Effect of Al Content on Corrosion and Discharge Properties of Extruded Mg-Al-Ca-Mn Alloys as Anode Material for Mg-air Batteries[J]. 材料研究学报, 2025, 39(5): 389-400.
[2] WU Yucheng, ZUO Tong, TAN Xiaoyue, ZHU Xiaoyong, LIU Jiaqin. Oxidation Behavior of Self-passivated W-Cr-Zr Alloys as the First Wall Candidate Material[J]. 材料研究学报, 2025, 39(5): 343-352.
[3] LI Haibin, XU Huiting, TANG Wei, LV Haibo, SHUAI Meirong. Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel[J]. 材料研究学报, 2025, 39(5): 362-370.
[4] FU Chunguo, XU Shiwei, YANG Xiaoyi, LI Mengnie. Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy[J]. 材料研究学报, 2025, 39(4): 305-313.
[5] CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang. Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2025, 39(4): 272-280.
[6] XU Congmin, SUN Shuwen, ZHU Wensheng, CHEN Zhiqiang, LI Chengchen. Influence of Ternary Compound Biocides on Corrosion Behavior of P110 Steel[J]. 材料研究学报, 2025, 39(4): 281-288.
[7] HU Pengqin, WANG Dong, LU Yuzhang, ZHANG Jian. Effect of Thermal Processes on Creep Properties of a Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2025, 39(3): 161-171.
[8] YU Xingfu, XI Keyu, ZHANG Hongwei, WANG Quanzhen, HAO Tianci, ZHENG Dongyue, SU Yong. Effect of Post-diffusion Treatment on Microstructure and Properties of Plasma Nitriding 7Cr7Mo2V2Si Cold Work Mold Steel[J]. 材料研究学报, 2025, 39(3): 225-232.
[9] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[10] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
[11] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
[12] XU Congmin, LI Xueli, FU Anqing, SUN Shuwen, CHEN Zhiqiang, LI Chengchen. Effect of Compound Bactericidal Corrosion Inhibitor on Corrosion Behavior of N80 Steel at Different Temperatures[J]. 材料研究学报, 2025, 39(2): 145-152.
[13] WU Xiaoqi, WAN Hongjiang, MING Hongliang, WANG Jianqiu, KE Wei, HAN En-Hou. Effect of Compression Rate on Hydrogen Embrittlement Sensitivity of X65 Pipeline Steel Based on in-situ Small Punch Test[J]. 材料研究学报, 2025, 39(2): 92-102.
[14] MA Xiuge, WU Qinghui, PANG Jianchao, LIU Zengqian, LI Shouxin, LUO Kailun, ZHANG Zhefeng. Effect of Grain Boundary Misorientation on Tensile Properties of Bi-crystal Superalloy at Ambient and High Temperatures[J]. 材料研究学报, 2025, 39(2): 81-91.
[15] YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. 材料研究学报, 2025, 39(2): 113-125.
No Suggested Reading articles found!