Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (3): 185-197    DOI: 10.11901/1005.3093.2024.310
ARTICLES Current Issue | Archive | Adv Search |
Effect of Argon Plasma Treatment on Interface Performance of Aramid Fiber Ⅲ / Epoxy Composites
WANG Jing(), HE Wenzheng, YANG Shuang, GENG Wen, REN Rong, XIONG Xuhai
Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
Cite this article: 

WANG Jing, HE Wenzheng, YANG Shuang, GENG Wen, REN Rong, XIONG Xuhai. Effect of Argon Plasma Treatment on Interface Performance of Aramid Fiber Ⅲ / Epoxy Composites. Chinese Journal of Materials Research, 2025, 39(3): 185-197.

Download:  HTML  PDF(5156KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Domestically produced Aramid fiber III are extensively utilized in aerospace and other military industries on account of their advantages like high specific strength and high specific modulus. Nevertheless, the drawbacks of its smooth surface, scarcity of active groups, and poor bonding performance with the resin matrix restrict the outstanding performance of its composite materials. In view of the above shortcomings, the surface of AF III was modified via argon plasma, and then monofilament composites of epoxy resin with the untreated and argon plasma treated aramid fiber III was fabricated respectively. The influence of argon plasma treatment time on the surface composition, surface morphology, surface wetting properties, monofilament tensile strength of the fiber and the interfacial bonding strength of composite material were investigated respectively by X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), Optical Microscopy (OM), Atomic Force Microscopy (AFM), Dynamic Contact Angle Analyzer (DCAA), Monofilament Tensile Strength and Micro-droplet Debonding Test, as well as interface strength test. The structural dissociation energy of the plasma-treated fiber was calculated using Materials studio (MS) software. The results indicated that after plasma treatment for 5 min~30 min, new groups (―C―O―, O=C―O, ―NH2) were introduced on the fiber surface; while the fiber surface roughness increased from 134 nm untreated to 214 nm; and the fiber surface wettability property was enhanced from 46.14 mJ/m2 for the bare fiber to 68.52 mJ/m2 for the argon plasma treated one, representing an increase of 48.44%. The surface of plasma treated fibers showed uneven morphology and changed periodically with the extension of treatment time; the strength of fiber monofilament decreased gradually with the increasing plasma treatment time. Besides the results of the microdroplet debonding test demonstrated that, after plasma treatment for 10 min, the interfacial shear strength (IFSS) of AF III/epoxy was increased from 28.51 MPa for the untreated fiber to 38.02 MPa for the treated one, which was improved by 33.36%.

Key words:  surface and interface in the materials      interface performance      argon plasma      aramid fiber     
Received:  17 July 2024     
ZTFLH:  TB324  
Fund: National Natural Science Foundation of China(51403129);Aeronautical Science Foundation(2024Z048054002)
Corresponding Authors:  WANG Jing, Tel: 13840156479, E-mail:jingwang_1217@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.310     OR     https://www.cjmr.org/EN/Y2025/V39/I3/185

Fig.1  Chemical structure of AF-Ⅲ
Fig.2  AF-Ⅲ/Epoxy composite preparation and test
Liquidγl / (mJ·m-2)γlp / (mJ·m-2)γld / (mJ·m-2)
Water72.353.618.7
Diiodomethane502.647.4
Table 1  Surface energy of water and diiodomethane
Fig.3  XPS survey scans of AF-Ⅲ treated for different time by argon plasma
(a) Scanning images (b) Content and proportion of elements
Fig.4  C1s spectra of AF-Ⅲ treated for different time by argon plasma
(a) 0 min (b) 5 min (c) 10 min (d) 15 min (e) 20 min (f) 25 min (g) 30 min (h) Changes in functional group content
Fig.5  N1s spectra of AF-Ⅲ treated for different time by argon plasma
(a) 0 min (b) 5 min (c) 10 min (d) 15 min (e) 20 min (f) 25 min (g) 30 min (h) Changes in functional group content
Fig.6  O1s spectra of AF-Ⅲ treated for different time by argon plasma
(a) 0 min (b) 5 min (c) 10 min (d) 15 min (e) 20 min (f) 25 min (g) 30 min (h) Changes in functional group content
Fig.7  AFM results of AF-III treated for different time by argon plasma
(a) 0 min (b) 5 min (c) 10 min (d) 15 min (e) 20 min (f) 25 min (g) 30 min (h) Ra (i) Rq
Fig.8  Tensile strength of AF-Ⅲ treated for different time by argon plasma
(a) Weibull (b) Average
Fig.9  Surface wettability of AF-Ⅲ treated for different time by argon plasma
(a) Dynamic contact angle (b) Surface energy
Fig.10  Microdroplet debonding
(a) Effect of microdroplet length (b) IFSS (c) Stress-strain curve (d) Failure stage
Fig.11  Microscope images of AF-Ⅲ/epoxy treated for different time by argon plasma (a1~g1) before microdroplet debonding (a2~g2) after microdroplet debonding
Fig.12  SEM images of AF-Ⅲ treated for different time by argon plasma (a1~g1) before microdroplet debonding (a2~g2) after microdroplet debonding
Fig.13  Positions in AF-Ⅲ where dissociation energy need to be calculated
NumberChemical bondBond energy
1C―N467.49
2C―N466.09
3C―C412.94
4C―N335.89
5C―N458.13
6C―C517.59
7C―N859.41
8C―N436.38
9C―C410.09
10C―C426.14
11C―H492.79
12C―N331.08
13C―H501.19
14C―H488.76
15C―N802.54
16N―H384.53
17C―N342.76
18C―H501.96
Table 2  Dissociation energy of AF-Ⅲ
Fig.14  Possible reactions of AF-Ⅲ treated after argon plasma
1 Zhang B, Jia L H, Tian M, et al. Surface and interface modification of aramid fiber and its reinforcement for polymer composites: A review [J]. Eur. Polym. J., 2021, 147: 110352
2 Cheng Z, Zhang L J, Chan J, et al. Aramid fiber with excellent interfacial properties suitable for resin composite in a wide polarity range [J]. Chem. Eng. J., 2018, 347: 483
3 Qi G C, Zhang B M, Du S Y. Assessment of F-Ⅲ and F-12 aramid fiber/epoxy interfacial adhesions based on fiber bundle specimens [J]. Compos. Part A Appl. Sci. Manuf., 2018, 112: 549
4 Cheng Z, Li X, Lv J W, et al. Constructing a new tear-resistant skin for aramid fiber to enhance composites interfacial performance based on the interfacial shear stability [J]. Appl. Surf. Sci., 2021, 544: 148935
5 Li S S, Shang S J, Wang N N, et al. Research progress on interfacial modification technology of para-aramid fiber [J]. Acta Mater. Compos. Sin., 2025, 42(3): 1186
李杉杉, 尚诗杰, 王娜娜 等. 对位芳纶纤维界面改性技术研究进展 [J]. 复合材料学报, 2025, 42(3): 1186
6 Wang J, Ren H, Chen P, et al. Surface properties of domesic aramid fiber III modified by oxygen plasma treatment [J]. Chin. J. Mater. Res., 2018, 32(1): 12
doi: 10.11901/1005.3093.2017.191
王 静, 任 航, 陈 平 等. 氧等离子体处理对国产芳III纤维表面性能的影响 [J]. 材料研究学报, 2018, 32(1): 12
7 De la parra S, Miguel Á, Fernández-pampín N, et al. High-performance aramids with intrinsic bactericide activity. [J]. ACS Appl. Mater. Interfaces, 2024, 16: 9293
8 Shi Y F, Tuo X L. Synthesis of heterocyclic aramid nanofibers and high performance nanopaper [J]. Adv. Mater., 2020, 1(4): 595
9 Xiong J H, Ding R J, Liu Z L, et al. High-strength, super-tough, and durable nacre-inspired MXene/heterocyclic aramid nanocomposite films for electromagnetic interference shielding and thermal management [J]. Chem. Eng. J., 2023, 474: 145972
10 Wu W W, Song Q Q, Li N, et al. Lightweight, robust, porous heterocyclic para-aramid aerogel hollow fibers for multifunctional applications [J]. J. Appl. Polym. Sci., 2024, 141(9): 55034
11 Yan D, Luo J J, Wang S J, et al. Carbon nanotube‐directed 7 GPa heterocyclic aramid fiber and its application in artificial muscles [J]. Adv. Mater., 2023, 36(22): 2306129
12 Li J Q, Wen Y Y, Xiao Z H, et al. Holey reduced graphene oxide scaffolded heterocyclic aramid fibers with enhanced mechanical performance [J]. Adv. Funct. Mater., 2022, 32(42): 2200937
13 Song J Y, Chen C F, Du X, et al. Aramid fiber coated with aramid nanofiber coating to improve its interfacial properties with polycarbonate [J]. Polym. Compos., 2023, 44(4): 2557
14 Nasser J, Lin J J, Steinke K, et al. Enhanced interfacial strength of aramid fiber reinforced composites through adsorbed aramid nanofiber coatings [J]. Compos. Sci. Technol., 2019, 174: 125
doi: 10.1016/j.compscitech.2019.02.025
15 Zhou N, Xia L, Jiang N Y, et al. Enhanced interfacial bonding of AF/PEEK composite based on CNT/aramid nanofiber multiscale flexible-rigid structure [J]. J. Mater. Sci. Technol., 2024, 197: 139
doi: 10.1016/j.jmst.2024.02.015
16 Zhao J. Effect of surface treatment on the structure and properties of para-aramid fibers by phosphoric acid [J]. Fibers Polym., 2013, 14: 59
17 Jia C Y, Zhang R Z, Yuan C C, et al. Surface modification of aramid fibers by amino functionalized silane grafting to improve interfacial property of aramid fibers reinforced composite [J]. Polym. Compos., 2020, 41(5): 2046
18 Yin L P, Zhou Z T, Luo Z, et al. Reinforcing effect of aramid fibers on fatigue behavior of SBR/aramid fiber composites [J]. Polym. Test., 2019, 80: 106092
19 Rodríguez-Uicab O, Avilés F, Gonzalez-Chi P I, et al. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers [J]. Appl. Surf. Sci., 2016, 385: 379
20 Gonzalez-Chi P I, Rodríguez-Uicab O, Martin-Barrera C, et al. Influence of aramid fiber treatment and carbon nanotubes on the interfacial strength of polypropylene hierarchical composites [J]. Compos. Part B-Eng., 2017, 122: 16
21 Cheng Z, Li B Y, Huang J Y, et al. Covalent modification of Aramid fibers' surface via direct fluorination to enhance composite interfacial properties [J]. Mater. Des., 2016, 106: 216
22 Gong X Y, Liu Y Y, Huang M N, et al. Dopamine-modified aramid fibers reinforced epoxidized natural rubber nanocomposites [J]. Compos. Commun., 2022, 29: 100996
23 Moosburger-will J, Lachner E, Löffler M, et al. Adhesion of carbon fibers to amine hardened epoxy resin: Influence of ammonia plasma functionalization of carbon fibers [J]. Appl. Surf. Sci., 2018, 453: 141
24 Jethva S, Bhabhor F, Patil C, et al. Studies of physio-chemical changes of dielectric barrier discharge plasma treated aramid fibers [J]. Vacuum, 2023, 215: 112313
25 Xu H, Xue J X, Bian H Get al. Green, simple, and rapid construction of coating on aramid fiber surfaces and their effects on the mechanical properties of aramid fiber/rubber composite interfaces [J]. J. Clean. Prod., 2024, 466: 142867
26 Zang H, Wang Z, Qin S, et al. Multifunctional and ultrastrong MXene modified aramid fibers [J]. Mater. Today Chem., 2023, 33: 101674
27 Cao Y Z, Hua H M, Yang P, et al. Investigation into the reaction mechanism underlying the atmospheric low-temperature plasma-induced oxidation of cellulose [J]. Carbohydr. Polym., 2020, 233: 115632
28 Gu R Q. Research on the application of dielectric barrier discharge low temperature technique in surface modification of para-aramid fibers [D]. Shanghai: Donghua University, 2013
顾如茜. 采用介质阻挡放电低温等离子体技术改性对位芳纶表面 [D]. 上海: 东华大学, 2013
29 Wang R X, Shen Y, Zhang C, et al. Comparison between helium and argon plasma jets on improving the hydrophilic property of PMMA surface [J]. Appl. Surf. Sci., 2016, 367: 401
30 Narimisa M, Onyshchenko Y, Morent R, et al. Improvement of PET surface modification using an atmospheric pressure plasma jet with different shielding gases [J]. Polym., 2021, 215: 123421
31 Kumar A, Škoro N, Gernjak W, et al. Degradation of diclofenac and 4-chlorobenzoic acid in aqueous solution by cold atmospheric plasma source [J]. Sci. Total Environ., 2023, 864: 161194
32 Peng C Y, Wu J S, Tsai C H D. Wettability distribution on the surface treated by plasma jet at different flow rates for microfluidic applications [J]. IEEE Trans. Plasma Sci., 2020, 49(1): 168
33 Abdel-fattah E. Surface activation of poly (methyl methacrylate) with atmospheric pressure Ar + H2O plasma [J]. Coatings, 2019, 9(4): 228
34 Wang M, Wang J, Liang J, et al. Strengthening the interface between individual aramid fibers and polymer at room and elevated temperatures [J]. Mater. Today Commun., 2020, 24: 101254
35 Dsouza R, Antunes P, Kakkonen M, et al. 3D interfacial debonding during microbond testing: Advantages of local strain recording [J]. Compos. Sci. Technol., 2020, 195: 108163
36 Bellil S, Pantaloni D, Shah D U, et al. Prediction of interfacial behaviour of single flax fiber bonded to various matrices by simulation of microdroplet test [J]. JCOMC., 2023, 11: 100351
[1] HAN Heng, LI Hongqiao, LI Peng, MA Guozheng, GUO Weiling, LIU Ming. Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating[J]. 材料研究学报, 2025, 39(1): 44-54.
[2] HUANG Di, NIU Yunsong, LI Shuai, DONG Zhihong, BAO Zebin, ZHU Shenglong. Thermal Cycling and Flame Thermal Shocking Failure Mechanism of Tetragonal Yttria-stabilized Zirconia TBCs Prepared on High Temperature Alloys by Suspension Plasma Spraying[J]. 材料研究学报, 2024, 38(9): 691-700.
[3] LI Yuanyuan, LIANG Jian, XIONG Ziliu, MIAO Bin, TIAN Xiugang, QI Jianjun, ZHENG Shijian. Influence of Alloying Elements on Interfacial Layer- and Galvanized Layer-Structure of New Hot-dip Galvanized Dual-phase Steel[J]. 材料研究学报, 2024, 38(6): 446-452.
[4] ZHANG Jia, GAO Minghao, LUAN Shengjia, XU Na, CHANG Hui, DENG Yuting, HOU Wanliang, CHANG Xinchun. Effect of Feedstock Powders on Microstructure and Properties of CoNiCrAlY Coatings[J]. 材料研究学报, 2024, 38(5): 347-355.
[5] WANG Huiming, WANG Jinlong, LI Yingju, ZHANG Hongyi, LV Xiaoren. Finite Element Analysis of Dry Friction Wear of Al-based Composite Coatings[J]. 材料研究学报, 2024, 38(12): 941-949.
[6] CHEN Jihong, WANG Yongli, XIONG Liangyin, SONG Lixin. Preparation of Low Activity Fe-Al Coating on 316L Steel Surface[J]. 材料研究学报, 2024, 38(11): 801-810.
[7] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[8] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[9] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[10] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[11] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[12] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[13] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[14] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[15] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
No Suggested Reading articles found!