Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (5): 321-328    DOI: 10.11901/1005.3093.2024.053
ARTICLES Current Issue | Archive | Adv Search |
Preparation, Thermal Shock and Wear Properties of a N-doped Ta Coating
NIU Yunsong1,2, ZHU Shenglong2(), WEN Gangzhu3, WANG Dianrong3, HUANG Jinfeng1, CHEN Minghui4(), CHEN Qiang5, WANG Fuhui4
1.State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Inner Mongolia North Heavy Industries Group Co., Ltd., Baotou 014030, China
4.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
5.Southwest Technology and Engineering Research Institute, Chongqing 400039, China
Cite this article: 

NIU Yunsong, ZHU Shenglong, WEN Gangzhu, WANG Dianrong, HUANG Jinfeng, CHEN Minghui, CHEN Qiang, WANG Fuhui. Preparation, Thermal Shock and Wear Properties of a N-doped Ta Coating. Chinese Journal of Materials Research, 2025, 39(5): 321-328.

Download:  HTML  PDF(13526KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Conventional magnetron sputtered Ta coating prepared by magnetron sputtering in low pressure Ar atmosphere was always of brittle β phase. Replacing Ar with Kr, Xe and other large atomic gases could increase the proportion of α-Ta within the coating, thus increasing the toughness of the coating. However, Kr and Xe etc. are rare and expensive, which is not suitable for production. In this study, a single-phase α-Ta coating was prepared on 304 stainless steel by magnetron sputtering in low pressure mixed Ar+N2 atmosphere, which is far cheap than the rare gases. By comparing the results of water quenching (thermal shock) test and wear test for the two type coatings, i.e. prepared in low pressure Ar and Ar+N2 respectively, it is found that: Prepared in low pressure Ar atmosphere, the sputtered Ta coating is mainly β-Ta. After 10 cycles of thermal shock, the oxide scale spalls off largely with a loss weight of 10.24 mg/cm2. Its Vickers hardness is HV370, the friction coefficient is 0.556, and the wear loss is as high as 1.9 × 10-3 mm3/(N·m); In the contrast, prepared in low pressure mixed Ar + N2 atmosphere, the sputtered Ta coating is pure α-Ta. After 10 cycles of thermal shock, its loss in weight is only 0.90 mg/cm2, what's more, there is no significant difference in surface morphology before and after thermal shock. Its Vickers hardness is HV1900, the friction coefficient is 0.304, and the wear loss is only 3.7 × 10-4 mm3/(N·m).

Key words:  materials failure and protection      N-doped Ta coating      magnetron sputtering      thermal shock      wear     
Received:  22 January 2024     
ZTFLH:  TG174.444  
Fund: National Natural Science Foundation of China(51701223)
Corresponding Authors:  ZHU Shenglong, Tel: (024) 23904856, E-mail: slzhu@imr.ac.cnCHEN Minghui, Tel: (024) 83691562, E-mail: mhchen@mail.neu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.053     OR     https://www.cjmr.org/EN/Y2025/V39/I5/321

Fig.1  Surface morphology of as-deposited (a) Ta(Ar) and (c) Ta(Ar+N2) coating, cross-sectional morphology of as-deposited (b) Ta(Ar) and (d) Ta(Ar+N2) coating
Fig.2  XRD patterns of the as-deposited Ta(Ar) and Ta(Ar+N2) coatings
Fig.3  Load-displacement (P-h) relationship of the Ta(Ar) and Ta(Ar+N2) coatings and the 304 stainless steel substrate (304SS)
Hardness / GPaModulus / GPa
Ta(Ar+N2)14.7233.8
Ta(Ar)6.3219.7
304SS4.0230.8
Table 1  Hardness and elastic modulus of the Ta(Ar) and Ta(Ar+N2) coatings and the 304 stainless steel substrate (304SS) obtained from their nano-indentation curves
Fig.4  Thermal shock kinetics at 820 oC of the two tantalum coatings: Ta(Ar) and Ta(Ar+N2)
Fig.5  XRD patterns of the Ta(Ar) and Ta(Ar+N2) coatings after thermal shock at 820 oC for 10 cycles
Fig.6  Surface morphologies ((a) low magnification,(b) high magnification) and cross-section morphology (c) of the Ta(Ar) coating after thermal shock at 820 oC for 10 cycles
Fig.7  Surface ((a) low magnification, (b) high magnification) and cross-section (c) morphologies of the Ta(Ar+N2) coating after thermal shock at 820 oC for 10 cycles
Fig.8  Friction coefficients of the Ta(Ar) and Ta(Ar+N2) coatings
CoatingsWeight loss / mgVolume loss / mm3·(N·m)-1
Ta(Ar)14.71.9 × 10-3
Ta(Ar+N2)6.33.7 × 10-4
Table 2  Wear loss of the two tantalum coatings (Ta(Ar) and Ta(Ar+N2)) through measuring weight (W) and volume of wear trace (V), respectively
Fig.9  SEM morphologies of the wear traces on the two tantalum coatings after wear test (a, b) Ta(Ar) coating and (c, d) Ta(Ar+N2) coating
1 Guan S, Zhang Q, Hu R N. Study on mechanism of additives for chromium electrodeposition by XPS and electrochemical methods [J]. Acta Metall. Sin., 2000, 36(11): 1179
关 山, 张 琦, 胡如南. 利用XPS及电化学方法研究电镀Cr添加剂的作用机理 [J]. 金属学报, 2000, 36(11): 1179
2 Song Y M, Wen G Z, Zhang J. Technologies to increase barrel life of large-calibre gun [J]. Equip. Environ. Eng., 2022, 19(7): 1
宋彦明, 温钢柱, 张 杰. 大口径火炮身管寿命提升技术探讨 [J]. 装备环境工程, 2022, 19(7): 1
3 Myers S, Lin J L, Souza R M, et al. The β to α phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering [J]. Surf. Coat. Technol., 2013, 214: 38
4 Lee S L, Windover D, Audino M, et al. High-rate sputter deposited tantalum coating on steel for wear and erosion mitigation [J]. Surf. Coat. Technol., 2002, 149(1): 62
5 Maeng S M, Axe L, Tyson T A, et al. Corrosion behavior of magnetron sputtered α-Ta coatings on smooth and rough steel substrates [J]. Surf. Coat. Technol., 2006, 200(20-21): 5717
6 Lundin D, Sarakinos K. An introduction to thin film processing using high-power impulse magnetron sputtering [J]. J. Mater. Res., 2012, 27: 780
7 Lin J L, Moore J J, Sproul W D, et al. Effect of negative substrate bias on the structure and properties of Ta coatings deposited using modulated pulse power magnetron sputtering [J]. IEEE Trans. Plasma Sci., 2010, 38(11): 3071
8 Ferreira F, Sousa C, Cavaleiro A, et al. Phase tailoring of tantalum thin films deposited in deep oscillation magnetron sputtering mode [J]. Surf. Coat. Technol., 2017, 314: 97
9 Frank S, Gruber P A, Handge U A, et al. In situ studies on the cohesive properties of α- and β-Ta layers on polyimide substrates [J]. Acta Mater., 2011, 59(15): 5881
10 Ren H, Sosnowski M. Tantalum thin films deposited by ion assisted magnetron sputtering [J]. Thin Solid Films, 2008, 516(8): 1898
11 Jiang A Q, Tyson T A, Axe L. The structure of small Ta clusters [J]. J. Phys.: Condens. Matter, 2005, 17: 6111
12 Matson D W, McClanahan E D, Lee S L, et al. Properties of thick sputtered Ta used for protective gun tube coatings [J]. Surf. Coat. Technol., 2001, 146-147: 344
13 Lee S L, Wei R H, Todaro M, et al. Electroplated and plasma enhanced magnetron sputtered Ta and Cr coatings for high temperature and high pressure operation [J]. MRS Online Proc. Library, 2006, 987: 9870313
14 Wang S, Xiong D S, Li J L, et al. Wear and erosion resistance properties of electroplating Ta coating in molten salt [J]. China Surf. Eng., 2015, 28(2): 101
王 升, 熊党生, 李建亮 等. 熔盐电镀钽及其耐磨损烧蚀性能 [J]. 中国表面工程, 2015, 28(2): 101
15 Cui J T, Liu X L, Tian X B, et al. Microstructures and properties of tantalum film grown by DC magnetron sputtering [J]. Chin. J. Vac. Sci. Technol., 2007, 27(3): 259
崔江涛, 刘向力, 田修波 等. 直流磁控溅射沉积钽膜的结构与性能研究 [J]. 真空科学与技术学报, 2007, 27(3): 259
16 Peng X M, Xia C Q, Wu A R, et al. Preparation of Ta-W coating on titanium alloy and its oxidation behavior [J]. Chin. J. Nonferr. Metals, 2015, 25(6): 1567
彭小敏, 夏长清, 吴安如 等. 钛合金表面Ta-W涂层的制备及循环氧化行为 [J]. 中国有色金属学报, 2015, 25(6): 1567
17 Guo P. The research of sueface characteristics and corrosion resistance of tantalum thin films deposited on 30CrMnSiNi2A steel by DC bias-voltage sputtering [D]. Harbin: Harbin Institute of Technology, 2011
郭 平. 30CrMnSiNi2A钢表面二极溅射镀钽层的结构及性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011
18 Arranz A, Palacio C. Composition of tantalum nitride thin films grown by low-energy nitrogen implantation: a factor analysis study of the Ta 4 f XPS core level [J]. Appl. Phys., 2005, 81A: 1405
19 Goldschmidt H J. Interstitial Alloys [M]. New York: Springer, 1967
20 Östhagen K, Kofstad P. The reaction between tantalum and nitrogen at 800~1300 oC [J]. J. Less Common Metals, 1963, 5: 7
21 Cui W F, Cao D, Qin G W. Microstructure and wear resistance of Ti/TiN multilayer films deposited by magnetron sputtering [J]. Acta Metall. Sin., 2015, 51(12): 1531
doi: 10.11900/0412.1961.2015.00115
崔文芳, 曹 栋, 秦高悟. 磁控溅射沉积Ti/TiN多层膜的组织特征及耐磨损性能 [J]. 金属学报, 2015, 51(12): 1531
doi: 10.11900/0412.1961.2015.00115
22 Ma Y T, Liu J B, Cui R L, et al. Research on the preparation and performance of Tungsten-Aluminum transmission target for micro-computed tomography by magnetron sputtering [J]. Acta Metall. Sin., 2015, 51(11): 1416
马玉田, 刘俊标, 霍荣玲 等. 基于磁控溅射法显微CT W-Al透射靶材的制备及其性能研究 [J]. 金属学报, 2015, 51(11): 1416
23 Sui X D, Li J G, Wang Q, et al. Preparation of Ti1 - x Al x N coating in cutting titanium alloy and its cutting performance [J]. Acta Metall. Sin., 2016, 52(6): 741
隋旭东, 李国建, 王 强 等. 钛合金切削用Ti1 - x Al x N涂层的制备及其切削性能研究 [J]. 金属学报, 2016, 52(6): 741
doi: 10.11900/0412.1961.2015.00454
24 Tan M X. Extracting hardness-displacement relations and elastic modulus using nanoindentation loading curves [J]. Acta Metall. Sin., 2005, 41(10): 1020
谭孟曦. 利用纳米压痕加载曲线计算硬度-压入深度关系及弹性模量 [J]. 金属学报, 2005, 41(10): 1020
25 Qian Y H, Li M S, Zhang Y M. Cracking and spalling behavior of thin oxide scale [J]. Corros. Sci. Prot. Technol., 2003, 15(2): 90
钱余海, 李美栓, 张亚明. 氧化膜开裂和剥落行为 [J]. 腐蚀科学与防护技术, 2003, 15(2): 90
26 Wang S. The preparation of Tantalum coating and the research of wear and ablation resistance [D]. Nanjing: Nanjing University of Science & Technology, 2015
王 升. 钽涂层的制备及其磨损与烧蚀性能研究 [D]. 南京: 南京理工大学, 2015
[1] LI Honglei, LIU Chuang, LU Zhengwei, CHU Tianyi, CHEN Yuqiu, JIANG Sumeng, GONG Jun, PEI Zhiliang. Preparation and Performance of Ni-Al2O3/Diamond Composite Coating[J]. 材料研究学报, 2025, 39(4): 314-320.
[2] YU Xingfu, XI Keyu, ZHANG Hongwei, WANG Quanzhen, HAO Tianci, ZHENG Dongyue, SU Yong. Effect of Post-diffusion Treatment on Microstructure and Properties of Plasma Nitriding 7Cr7Mo2V2Si Cold Work Mold Steel[J]. 材料研究学报, 2025, 39(3): 225-232.
[3] HUANG Di, NIU Yunsong, LI Shuai, DONG Zhihong, BAO Zebin, ZHU Shenglong. Thermal Cycling and Flame Thermal Shocking Failure Mechanism of Tetragonal Yttria-stabilized Zirconia TBCs Prepared on High Temperature Alloys by Suspension Plasma Spraying[J]. 材料研究学报, 2024, 38(9): 691-700.
[4] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[5] JING Ting, LIANG Zheming, YU Yang. Acoustic Emission Characteristics of Fatigue Propagation of Superalloy Based on Quadratic K-entropy[J]. 材料研究学报, 2024, 38(7): 490-498.
[6] CUI Huaiyun, LIU Zhiyong, LU Lin. Critical Corrosion Factors for J55 Tubing Steel in a Simulated Annulus Environment of CO2 Injection Well[J]. 材料研究学报, 2024, 38(4): 308-320.
[7] LI Feiyang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, TANG Yanbing. Passivation Behavior of Laser Selective Melted 316L Stainless Steel in Sulphuric Acid Containing Chloride Ion Solution[J]. 材料研究学报, 2024, 38(3): 221-231.
[8] WANG Huiming, WANG Jinlong, LI Yingju, ZHANG Hongyi, LV Xiaoren. Finite Element Analysis of Dry Friction Wear of Al-based Composite Coatings[J]. 材料研究学报, 2024, 38(12): 941-949.
[9] LI Yufeng, FENG Feng, LIU Shibo, LIU Lishuang, GAO Xiaohui. Preparation of Nitrogen and Phosphorus Co-doped Graphene Oxide and Corrosion Resistance of Waterborne Composite Coatings NPGO/Epoxy Resin[J]. 材料研究学报, 2024, 38(11): 861-871.
[10] ZHANG Zejiang, LI Xinmei. Wear and Corrosion Resistance of Laser Cladding CoCrFeNiSi x High Entropy Alloy Coating[J]. 材料研究学报, 2024, 38(10): 741-750.
[11] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[12] WANG Wei, PENG Yiqing, DING Shijie, CHANG Wenjuan, GAO Yuan, WANG Kuaishe. Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC[J]. 材料研究学报, 2023, 37(6): 432-442.
[13] LI Linlong, YANG Liqi, XUE Weihai, GAO Siyang, WANG Xu, DUAN Deli, LI Shu. Sliding Friction and Wear between Rare Earth Modified GCR15 Steel against Cage Materials[J]. 材料研究学报, 2023, 37(6): 408-416.
[14] TIAN Zhigang, LI Xinmei, QIN Zhong, WANG Xiaohui, LIU Weibin, HUNG Yong. Microstructure and Wear Resistance of CoCrFeNiTi x High Entropy Alloy Coating[J]. 材料研究学报, 2023, 37(3): 219-227.
[15] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
No Suggested Reading articles found!