|
|
Acoustic Emission Characteristics of Fatigue Propagation of Superalloy Based on Quadratic K-entropy |
JING Ting1, LIANG Zheming2, YU Yang1( ) |
1.School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2.Shenyang Aircraft Design & Research Institute, Shenyang 110035, China |
|
Cite this article:
JING Ting, LIANG Zheming, YU Yang. Acoustic Emission Characteristics of Fatigue Propagation of Superalloy Based on Quadratic K-entropy. Chinese Journal of Materials Research, 2024, 38(7): 490-498.
|
Abstract Metal fatigue crack growth monitoring has been a hot topic in the study of material properties. In this study, high sensitive acoustic emission technology is used to conduct online monitoring of metal fatigue crack growth. A quadratic K-entropy method is proposed for the first time, the calculation results of which are used as a new parameter to analyze this uncertain process. The experimental results indicate that the acoustic emission signal in metal fatigue growth shows chaotic characteristics, and its trend has a clear corresponding relationship with the process of fatigue crack growth after the quadratic K-entropy treatment, and the fatigue fracture information can be obtained in advance. The advance rate is more than 8% of the whole process, which effectively provides a basis for the prediction of fatigue fracture.
|
Received: 25 August 2023
|
|
Fund: Innovative Application Program of Aeronautical Engine Corporation of China(630010504) |
Corresponding Authors:
YU Yang, Tel: 13555816159, E-mail: yuy@sut.edu.cn
|
[1] |
Wu Y L, Xuan H J. Initiation and propagation characteristics of multi-source fatigue crack in superalloy disk [J]. J. Northwest. Polytech. Univ., 2020, 38(6): 1291
|
|
吴英龙, 宣海军. 高温合金盘多源疲劳裂纹萌生及扩展特征 [J]. 西北工业大学学报, 2020, 38(6): 1291
|
[2] |
Zhou J, Mao H L, Huang Z F, et al. Acoustic emission technique for the detecting of metal fatigue fracture [J]. China Meas. Technol., 2007, 33(3): 7
|
|
周 洁, 毛汉领, 黄振峰 等. 金属疲劳断裂的声发射检测技术 [J]. 中国测试技术, 2007, 33(3): 7
|
[3] |
Chai M Y, Duan Q, Zhang Z X. Application of acoustic emission technology in study of fatigue fracture of metals [J]. Chem. Eng. Mach., 2015, 42(6): 735
|
|
柴孟瑜, 段 权, 张早校. 声发射技术在金属疲劳断裂研究中的应用 [J]. 化工机械, 2015, 42(6): 735
|
[4] |
Karimian S F, Modarres M, Bruck H A. A new method for detecting fatigue crack initiation in aluminum alloy using acoustic emission waveform information entropy [J]. Eng. Fract. Mech., 2020, 223: 106771
|
[5] |
Yu J G, Ziehl P, Zárate B, et al. Prediction of fatigue crack growth in steel bridge components using acoustic emission [J]. J. Constr. Steel Res., 2011, 67(8): 1254
|
[6] |
Kohn D H, Ducheyne P, Awerbuch J. Acoustic emission during fatigue of Ti-6Al-4V: incipient fatigue crack detection limits and generalized data analysis methodology [J]. J. Mater. Sci., 1992, 27: 3133
|
[7] |
Bassim M N, Lawrence S S, Liu C D. Detection of the onset of fatigue crack growth in rail steels using acoustic emission [J]. Eng. Fract. Mech., 1994, 47(2): 207
|
[8] |
Huang Z F, Liu Y J, Mao H Y, et al. Feature analysis for acoustic emission signals during metal fatigue damage based on Kolmogorov entropy and correlation dimension [J]. J. Vib. Shock, 2017, 36(15): 210
|
|
黄振峰, 刘永坚, 毛汉颖 等. 基于K熵和关联维数的金属疲劳损伤过程的声发射信号特征分析 [J]. 振动与冲击, 2017, 36(15): 210
|
[9] |
Chai M Y, Zhang Z X, Duan Q, et al. Assessment of fatigue crack growth in 316LN stainless steel based on acoustic emission entropy [J]. Int. J. Fatigue, 2018, 109: 145
|
[10] |
Berkovits A, Fang D N. Study of fatigue crack characteristics by acoustic emission [J]. Eng. Fract. Mech., 1995, 51(3): 401
|
[11] |
Chai M Y, Zhang Z X, Duan Q. A new qualitative acoustic emission parameter based on Shannon's entropy for damage monitoring [J]. Mech. Syst. Signal Process., 2018, 100: 617
|
[12] |
Ono K, Gallego A. Research and applications of AE on advanced composites [J]. J. Acoust. Emiss., 2012, 30: 180
|
[13] |
Behnia A, Chai H K, Shiotani T. Advanced structural health monitoring of concrete structures with the aid of acoustic emission [J]. Constr. Build. Mater., 2014, 65: 282
|
[14] |
Chai M Y, Zhang J, Zhang Z X, et al. Acoustic emission studies for characterization of fatigue crack growth in 316LN stainless steel and welds [J]. Appl. Acoust., 2017, 126: 101
|
[15] |
Grosse C, Ohtsu M. Acoustic Emission Testing [M]. Berlin, Heidelberg: Springer, 2008
|
[16] |
Wang Z J, Hu G H, Yu H R, et al. Fatigue crack growth of Q345B using acoustic emission technique [J]. J. Nanchang Hangkong Univ.: Nat. Sci., 2016, 30(4): 99
|
|
王振京, 胡国华, 喻海荣 等. 基于声发射技术的Q345B疲劳裂纹扩展研究 [J]. 南昌航空大学学报: 自然科学版, 2016, 30(4): 99
|
[17] |
Ennaceur C, Laksimi A, Hervé C, et al. Monitoring crack growth in pressure vessel steels by the acoustic emission technique and the method of potential difference [J]. Int. J. Pressure Vessels Pip., 2006, 83(3): 197
|
[18] |
Warren A W, Guo Y B. Acoustic emission monitoring for rolling contact fatigue of superfinished ground surfaces [J]. Int. J. Fatigue, 2007, 29(4): 603
|
[19] |
Yang M W. Acoustic Emission Testing [M]. Beijing: China Machine Press, 2010
|
|
杨明纬. 声发射检测 [M]. 北京: 机械工业出版社, 2010
|
[20] |
Ning X B. Application research of acoustic emission technology in the detection of composite damage [D]. Guanghan: Civil Aviation Flight University of China, 2014
|
|
宁小波. 声发射技术在复合材料损伤检测中的应用研究 [D]. 广汉: 中国民用航空飞行学院, 2014
|
[21] |
Long X J, Li Q F, He C H, et al. Experimental study on the monitoring of crane steel beam fatigue characteristics with acoustic emission technology [J]. China Meas. Test, 2015, 41(9): 11
|
|
龙小江, 李秋锋, 何才厚 等. 起重机钢梁疲劳特性声发射监测实验研究 [J]. 中国测试, 2015, 41(9): 11
|
[22] |
Martin C A, Van Way C B, Lockyer A J, et al. Acoustic emission testing on an F/A-18 E/F titanium bulkhead [A]. Proceedings of SPIE 2444, Smart Structures and Materials 1995: Smart Sensing, Processing, and Instrumentation [C]. San Diego: SPIE, 1995: 204
|
[23] |
Hamstad M A, McColskey J D. Wideband and narrowband acoustic emission waveforms from extraneous sources during fatigue of steel samples [J]. J. Acoust. Emiss., 1997, 15(1-4): 1
|
[24] |
Keshtgar A, Sauerbrunn C M, Modarres M. Structural reliability prediction using acoustic emission-based modeling of fatigue crack growth [J]. Appl. Sci., 2018, 8(8): 1225
|
[25] |
Shen G T, Geng R S, Liu S F. Parameter analysis of acoustic emission signals [J]. Nondestr. Test., 2002, 24(2): 72
|
|
沈功田, 耿荣生, 刘时风. 声发射信号的参数分析方法 [J]. 无损检测, 2002, 24(2): 72
|
[26] |
Pomponi E, Vinogradov A. A real-time approach to acoustic emission clustering [J]. Mech. Syst. Signal Process., 2013, 40: 791
|
[27] |
Morton T M, Smith S, Harrington R M. Effect of loading variables on the acoustic emissions of fatigue-crack growth [J]. Exp. Mech., 1974, 14: 208
|
[28] |
Han Z Y, Luo H Y, Cao J W, et al. Acoustic emission during fatigue crack propagation in a micro-alloyed steel and welds [J]. Mater. Sci. Eng., 2011, 528A: 7751
|
[29] |
Han Z Y, Luo H Y, Zhang Y B, et al. Effects of micro-structure on fatigue crack propagation and acoustic emission behaviors in a micro-alloyed steel [J]. Mater. Sci. Eng., 2013, 559A: 534
|
[30] |
Li L F, Zhang Z, Shen G T. Influence of grain size on fatigue crack propagation and acoustic emission features in commercial-purity zirconium [J]. Mater. Sci. Eng., 2015, 636A: 35
|
[31] |
Moorthy V, Jayakumar T, Raj B. Influence of micro structure on acoustic emission behavior during Stage 2 fatigue crack growth in solution annealed, thermally aged and weld specimens of AISI type 316 stainless steel [J]. Mater. Sci. Eng., 1996, 212A: 273
|
[32] |
Yu J G, Ziehl P, Matta F, et al. Acoustic emission detection of fatigue damage in cruciform welded joints [J]. J. Constr. Steel Res., 2013, 86: 85
|
[33] |
Nemati N, Metrovich B, Nanni A. Acoustic emission assessment of through-thickness fatigue crack growth in steel members [J]. Adv. Struct. Eng., 2015, 18(2): 269
|
[34] |
Aggelis D G, Kordatos E Z, Matikas T E. Acoustic emission for fatigue damage characterization in metal plates [J]. Mech. Res. Commun., 2011, 38: 106
|
[35] |
Bourchak M, Farrow I R, Bond I P, et al. Acoustic emission energy as a fatigue damage parameter for CFRP composites [J]. Int. J. Fatigue, 2007, 29: 457
|
[36] |
Gagar D, Foote P, Irving P E. Effects of loading and sample geometry on acoustic emission generation during fatigue crack growth: implications for structural health monitoring [J]. Int. J. Fatigue, 2015, 81: 117
|
[37] |
Biancolini M E, Brutti C, Paparo G, et al. Fatigue cracks nucleation on steel, Acoustic emission and fractal analysis [J]. Int. J. Fatigue, 2006, 28: 1820
|
[38] |
Rabiei M, Modarres M. Quantitative methods for structural health management using in situ acoustic emission monitoring [J]. Int. J. Fatigue, 2013, 49: 81
|
[39] |
Rabiei M. A Bayesian framework for structural health management using acoustic emission monitoring and periodic inspections [D]. College Park: University of Maryland, 2011
|
[40] |
Keshtgar A, Modarres M. Probabilistic approach for nondestructive detection of fatigue crack initiation and sizing [J]. Int. J. Prognost. Health Manage., 2016, 7(2): 19
|
[41] |
Zárate B A, Caicedo J M, Yu J G, et al. Deterministic and probabilistic fatigue prognosis of cracked specimens using acoustic emissions [J]. J. Constr. Steel Res., 2012, 76: 68
|
[42] |
Yao X S, Zhang Y X, Ming T F, et al. Application of chaos-based weak signal detection approach to the acoustic emission signal of gear crack via duffing oscillator [J]. J. Wuhan Univ. Technol. (Trans. Sci. Eng.), 2009, 33(2): 318
|
|
姚晓山, 张永祥, 明廷锋 等. 混沌弱信号检测法在齿轮裂纹声发射检测中的应用 [J]. 武汉理工大学学报(交通科学与工程版), 2009, 33(2): 318
|
[43] |
Chai M Y, Duan Q, Zhang Z X. Acoustic emission study of fatigue crack propagation in Q345R [J]. Chin. J. Eng., 2015, 37(12): 1588
|
|
柴孟瑜, 段 权, 张早校. Q345R疲劳裂纹扩展过程的声发射研究 [J]. 工程科学学报, 2015, 37(12): 1588
|
[44] |
Zhu R H, Gang T. Fatigue crack propagation of aluminum alloy based on acoustic emission monitoring [J]. Trans. China Weld. Inst., 2013, 34(3): 29
|
|
朱荣华, 刚 铁. 铝合金疲劳裂纹扩展声发射监测 [J]. 焊接学报, 2013, 34(3): 29
|
[45] |
Yu J G, Ziehl P. Stable and unstable fatigue prediction for A572 structural steel using acoustic emission [J]. J. Constr. Steel Res., 2012, 77: 173
|
[46] |
Han W L, Xi J H. Chaotic characteristics extracting and trend analysis on acoustic emission signal of tool condition [J]. J. Shenyang Inst. Aeronaut. Eng., 2010, 27(4): 74
|
|
韩文兰, 席剑辉. 刀具声发射信号混沌特征提取及趋势分析 [J]. 沈阳航空工业学院学报, 2010, 27(4): 74
|
[47] |
Bukkapatnam S T S, Kumara S R T, Lakhtakia A. Analysis of acoustic emission signals in machining [J]. J. Manuf. Sci. Eng., 1999, 121(4): 568
|
[48] |
Jiang X X, Cao J Y, Li R, et al. Fault diagnosis of air compressor based on AE signals and correlation dimension [J]. J. Mech. Strength, 2011, 33(6): 803
|
|
蒋旭鑫, 曹军义, 李 锐 等. 基于声发射和关联维数的空气压缩机故障诊断技术研究 [J]. 机械强度, 2011, 33(6): 803
|
[49] |
Guan S, Peng C. Chaotic characteristic analysis of tool wear acoustic emission signal [J]. Trans. Chin. Soc. Agric. Eng., 2015, 31(11): 60
|
[50] |
Cheng X M, Hu F, Deng A D, et al. Characteristic analysis and localization of acoustic emission source based on chaos theory [J]. China Mech. Eng., 2011, 22(9): 1013
|
|
成新民, 胡 峰, 邓艾东 等. 基于混沌理论的碰摩声发射特征分析与源定位 [J]. 中国机械工程, 2011, 22(9): 1013
|
[51] |
Liu Z, Jiang Y, Zou S Y, et al. Chaos analysis on acoustic emission signals of Francis turbine under cavitation [J]. J. Chin. Soc. Power Eng., 2021, 41(7): 609
|
|
刘 忠, 蒋 盈, 邹淑云 等. 混流式水轮机空化声发射信号的混沌特性分析 [J]. 动力工程学报, 2021, 41(7): 609
|
[52] |
Chen Y, Yang J R, Jin R X, et al. Experimental Study on acoustic emission signals during glunting process of grinding wheels based on chaos theory [J]. Noise Vib. Control, 2022, 42(5): 148
|
|
陈 芸, 杨嘉睿, 金容鑫 等. 基于混沌理论砂轮磨钝过程声发射信号试验研究 [J]. 噪声与振动控制, 2022, 42(5): 148
|
[53] |
Mao X D, Yuan H Q, Sun H G. Relevancy of correlation dimension and Kolmogorov entropy in state of gearbox discrimination [J]. Mach. Tool Hydraul., 2015, 43(13): 189
|
|
毛向东, 袁惠群, 孙华刚. 关联维数和Kolmogorov熵在变速箱状态判别中的关联性 [J]. 机床与液压, 2015, 43(13): 189
|
[54] |
Bai L, Liang P. Kolmogorov entropy diagnosis for vibration faults of turbine rotor based on wavelet packet filtering [J]. J. Vib. Shock, 2008, 27(5): 148
|
|
白 蕾, 梁 平. 基于小波包滤波的汽轮机转子振动故障的Kolmogorov熵诊断 [J]. 振动与冲击, 2008, 27(5): 148
|
[55] |
Yang S X, Wang W J. Kolmogorov entropy and its application to the diagnosis of mechanical faults [J]. Mech. Sci. Technol., 2000, 19(1): 6
|
|
杨世锡, 汪慰军. 柯尔莫哥洛夫熵及其在故障诊断中的应用 [J]. 机械科学与技术, 2000, 19(1): 6
|
[56] |
Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from a chaotic signal [J]. Phys. Rev., 1983, 28A(4) : 2591
|
[57] |
Schouten J C, Takens F, van den Bleek C M. Maximum-likelihood estimation of the entropy of an attractor [J]. Phys. Rev., 1994, 49E(1) : 126
|
[58] |
Daw C S, Thomas J F, Richards G A, et al. Chaos in thermal pulse combustion [J]. Chaos, 1995, 5(4): 662
pmid: 12780223
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|