Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (7): 490-498    DOI: 10.11901/1005.3093.2023.418
ARTICLES Current Issue | Archive | Adv Search |
Acoustic Emission Characteristics of Fatigue Propagation of Superalloy Based on Quadratic K-entropy
JING Ting1, LIANG Zheming2, YU Yang1()
1.School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Shenyang Aircraft Design & Research Institute, Shenyang 110035, China
Cite this article: 

JING Ting, LIANG Zheming, YU Yang. Acoustic Emission Characteristics of Fatigue Propagation of Superalloy Based on Quadratic K-entropy. Chinese Journal of Materials Research, 2024, 38(7): 490-498.

Download:  HTML  PDF(3024KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Metal fatigue crack growth monitoring has been a hot topic in the study of material properties. In this study, high sensitive acoustic emission technology is used to conduct online monitoring of metal fatigue crack growth. A quadratic K-entropy method is proposed for the first time, the calculation results of which are used as a new parameter to analyze this uncertain process. The experimental results indicate that the acoustic emission signal in metal fatigue growth shows chaotic characteristics, and its trend has a clear corresponding relationship with the process of fatigue crack growth after the quadratic K-entropy treatment, and the fatigue fracture information can be obtained in advance. The advance rate is more than 8% of the whole process, which effectively provides a basis for the prediction of fatigue fracture.

Key words:  materials failure and protection      fatigue crack growth      chaotic characteristic      acoustic emission     
Received:  25 August 2023     
ZTFLH:  TG113.25+5  
Fund: Innovative Application Program of Aeronautical Engine Corporation of China(630010504)
Corresponding Authors:  YU Yang, Tel: 13555816159, E-mail: yuy@sut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.418     OR     https://www.cjmr.org/EN/Y2024/V38/I7/490

Fig.1  Definitions of acoustic emission parameters
Fig.2  Size of fatigue sample (unit: mm)
Fig.3  Instron-300DX static hydraulic universal testing machine and test equipment description
Fig.4  Schematic of acoustic emission signal acquisition system
Fig.5  Fracture state of superalloy test rod
Fig.6  Acoustic emission signal parameters in channel 1
Fig.7  Acoustic emission signal parameters in channel 2
Fig.8  Acoustic emission signal parameters in channel 3
ChannelRise timeCountEnergyAmplitudeSignal strengthAbsolute energy
Channel 12.29746.99482.27840.02372.656115.0792
Channel 22.545721.204236.68780.036433.7580460.7285
Channel 32.35255.90172.58100.02712.611727.8711
Table 1  Coefficient of variation of acoustic emission parameters in different channels
Fig.9  Magnification of acoustic emission parameter absolute energy in channel 1 (a) and channel 3 (b)
Fig.10  Calculation results of the first K-entropy of absolute energy parameters in channel 1 (a) and channel 3 (b)
Fig.11  Calculation results of the quadratic K-entropy of the absolute energy parameters in channel 1 (a) and channel 3 (b)
Fig.12  Highest point of quadratic K-entropy vs. the jump point of acoustic emission signal in channel 1 (a) and channel 3 (b)
[1] Wu Y L, Xuan H J. Initiation and propagation characteristics of multi-source fatigue crack in superalloy disk [J]. J. Northwest. Polytech. Univ., 2020, 38(6): 1291
吴英龙, 宣海军. 高温合金盘多源疲劳裂纹萌生及扩展特征 [J]. 西北工业大学学报, 2020, 38(6): 1291
[2] Zhou J, Mao H L, Huang Z F, et al. Acoustic emission technique for the detecting of metal fatigue fracture [J]. China Meas. Technol., 2007, 33(3): 7
周 洁, 毛汉领, 黄振峰 等. 金属疲劳断裂的声发射检测技术 [J]. 中国测试技术, 2007, 33(3): 7
[3] Chai M Y, Duan Q, Zhang Z X. Application of acoustic emission technology in study of fatigue fracture of metals [J]. Chem. Eng. Mach., 2015, 42(6): 735
柴孟瑜, 段 权, 张早校. 声发射技术在金属疲劳断裂研究中的应用 [J]. 化工机械, 2015, 42(6): 735
[4] Karimian S F, Modarres M, Bruck H A. A new method for detecting fatigue crack initiation in aluminum alloy using acoustic emission waveform information entropy [J]. Eng. Fract. Mech., 2020, 223: 106771
[5] Yu J G, Ziehl P, Zárate B, et al. Prediction of fatigue crack growth in steel bridge components using acoustic emission [J]. J. Constr. Steel Res., 2011, 67(8): 1254
[6] Kohn D H, Ducheyne P, Awerbuch J. Acoustic emission during fatigue of Ti-6Al-4V: incipient fatigue crack detection limits and generalized data analysis methodology [J]. J. Mater. Sci., 1992, 27: 3133
[7] Bassim M N, Lawrence S S, Liu C D. Detection of the onset of fatigue crack growth in rail steels using acoustic emission [J]. Eng. Fract. Mech., 1994, 47(2): 207
[8] Huang Z F, Liu Y J, Mao H Y, et al. Feature analysis for acoustic emission signals during metal fatigue damage based on Kolmogorov entropy and correlation dimension [J]. J. Vib. Shock, 2017, 36(15): 210
黄振峰, 刘永坚, 毛汉颖 等. 基于K熵和关联维数的金属疲劳损伤过程的声发射信号特征分析 [J]. 振动与冲击, 2017, 36(15): 210
[9] Chai M Y, Zhang Z X, Duan Q, et al. Assessment of fatigue crack growth in 316LN stainless steel based on acoustic emission entropy [J]. Int. J. Fatigue, 2018, 109: 145
[10] Berkovits A, Fang D N. Study of fatigue crack characteristics by acoustic emission [J]. Eng. Fract. Mech., 1995, 51(3): 401
[11] Chai M Y, Zhang Z X, Duan Q. A new qualitative acoustic emission parameter based on Shannon's entropy for damage monitoring [J]. Mech. Syst. Signal Process., 2018, 100: 617
[12] Ono K, Gallego A. Research and applications of AE on advanced composites [J]. J. Acoust. Emiss., 2012, 30: 180
[13] Behnia A, Chai H K, Shiotani T. Advanced structural health monitoring of concrete structures with the aid of acoustic emission [J]. Constr. Build. Mater., 2014, 65: 282
[14] Chai M Y, Zhang J, Zhang Z X, et al. Acoustic emission studies for characterization of fatigue crack growth in 316LN stainless steel and welds [J]. Appl. Acoust., 2017, 126: 101
[15] Grosse C, Ohtsu M. Acoustic Emission Testing [M]. Berlin, Heidelberg: Springer, 2008
[16] Wang Z J, Hu G H, Yu H R, et al. Fatigue crack growth of Q345B using acoustic emission technique [J]. J. Nanchang Hangkong Univ.: Nat. Sci., 2016, 30(4): 99
王振京, 胡国华, 喻海荣 等. 基于声发射技术的Q345B疲劳裂纹扩展研究 [J]. 南昌航空大学学报: 自然科学版, 2016, 30(4): 99
[17] Ennaceur C, Laksimi A, Hervé C, et al. Monitoring crack growth in pressure vessel steels by the acoustic emission technique and the method of potential difference [J]. Int. J. Pressure Vessels Pip., 2006, 83(3): 197
[18] Warren A W, Guo Y B. Acoustic emission monitoring for rolling contact fatigue of superfinished ground surfaces [J]. Int. J. Fatigue, 2007, 29(4): 603
[19] Yang M W. Acoustic Emission Testing [M]. Beijing: China Machine Press, 2010
杨明纬. 声发射检测 [M]. 北京: 机械工业出版社, 2010
[20] Ning X B. Application research of acoustic emission technology in the detection of composite damage [D]. Guanghan: Civil Aviation Flight University of China, 2014
宁小波. 声发射技术在复合材料损伤检测中的应用研究 [D]. 广汉: 中国民用航空飞行学院, 2014
[21] Long X J, Li Q F, He C H, et al. Experimental study on the monitoring of crane steel beam fatigue characteristics with acoustic emission technology [J]. China Meas. Test, 2015, 41(9): 11
龙小江, 李秋锋, 何才厚 等. 起重机钢梁疲劳特性声发射监测实验研究 [J]. 中国测试, 2015, 41(9): 11
[22] Martin C A, Van Way C B, Lockyer A J, et al. Acoustic emission testing on an F/A-18 E/F titanium bulkhead [A]. Proceedings of SPIE 2444, Smart Structures and Materials 1995: Smart Sensing, Processing, and Instrumentation [C]. San Diego: SPIE, 1995: 204
[23] Hamstad M A, McColskey J D. Wideband and narrowband acoustic emission waveforms from extraneous sources during fatigue of steel samples [J]. J. Acoust. Emiss., 1997, 15(1-4): 1
[24] Keshtgar A, Sauerbrunn C M, Modarres M. Structural reliability prediction using acoustic emission-based modeling of fatigue crack growth [J]. Appl. Sci., 2018, 8(8): 1225
[25] Shen G T, Geng R S, Liu S F. Parameter analysis of acoustic emission signals [J]. Nondestr. Test., 2002, 24(2): 72
沈功田, 耿荣生, 刘时风. 声发射信号的参数分析方法 [J]. 无损检测, 2002, 24(2): 72
[26] Pomponi E, Vinogradov A. A real-time approach to acoustic emission clustering [J]. Mech. Syst. Signal Process., 2013, 40: 791
[27] Morton T M, Smith S, Harrington R M. Effect of loading variables on the acoustic emissions of fatigue-crack growth [J]. Exp. Mech., 1974, 14: 208
[28] Han Z Y, Luo H Y, Cao J W, et al. Acoustic emission during fatigue crack propagation in a micro-alloyed steel and welds [J]. Mater. Sci. Eng., 2011, 528A: 7751
[29] Han Z Y, Luo H Y, Zhang Y B, et al. Effects of micro-structure on fatigue crack propagation and acoustic emission behaviors in a micro-alloyed steel [J]. Mater. Sci. Eng., 2013, 559A: 534
[30] Li L F, Zhang Z, Shen G T. Influence of grain size on fatigue crack propagation and acoustic emission features in commercial-purity zirconium [J]. Mater. Sci. Eng., 2015, 636A: 35
[31] Moorthy V, Jayakumar T, Raj B. Influence of micro structure on acoustic emission behavior during Stage 2 fatigue crack growth in solution annealed, thermally aged and weld specimens of AISI type 316 stainless steel [J]. Mater. Sci. Eng., 1996, 212A: 273
[32] Yu J G, Ziehl P, Matta F, et al. Acoustic emission detection of fatigue damage in cruciform welded joints [J]. J. Constr. Steel Res., 2013, 86: 85
[33] Nemati N, Metrovich B, Nanni A. Acoustic emission assessment of through-thickness fatigue crack growth in steel members [J]. Adv. Struct. Eng., 2015, 18(2): 269
[34] Aggelis D G, Kordatos E Z, Matikas T E. Acoustic emission for fatigue damage characterization in metal plates [J]. Mech. Res. Commun., 2011, 38: 106
[35] Bourchak M, Farrow I R, Bond I P, et al. Acoustic emission energy as a fatigue damage parameter for CFRP composites [J]. Int. J. Fatigue, 2007, 29: 457
[36] Gagar D, Foote P, Irving P E. Effects of loading and sample geometry on acoustic emission generation during fatigue crack growth: implications for structural health monitoring [J]. Int. J. Fatigue, 2015, 81: 117
[37] Biancolini M E, Brutti C, Paparo G, et al. Fatigue cracks nucleation on steel, Acoustic emission and fractal analysis [J]. Int. J. Fatigue, 2006, 28: 1820
[38] Rabiei M, Modarres M. Quantitative methods for structural health management using in situ acoustic emission monitoring [J]. Int. J. Fatigue, 2013, 49: 81
[39] Rabiei M. A Bayesian framework for structural health management using acoustic emission monitoring and periodic inspections [D]. College Park: University of Maryland, 2011
[40] Keshtgar A, Modarres M. Probabilistic approach for nondestructive detection of fatigue crack initiation and sizing [J]. Int. J. Prognost. Health Manage., 2016, 7(2): 19
[41] Zárate B A, Caicedo J M, Yu J G, et al. Deterministic and probabilistic fatigue prognosis of cracked specimens using acoustic emissions [J]. J. Constr. Steel Res., 2012, 76: 68
[42] Yao X S, Zhang Y X, Ming T F, et al. Application of chaos-based weak signal detection approach to the acoustic emission signal of gear crack via duffing oscillator [J]. J. Wuhan Univ. Technol. (Trans. Sci. Eng.), 2009, 33(2): 318
姚晓山, 张永祥, 明廷锋 等. 混沌弱信号检测法在齿轮裂纹声发射检测中的应用 [J]. 武汉理工大学学报(交通科学与工程版), 2009, 33(2): 318
[43] Chai M Y, Duan Q, Zhang Z X. Acoustic emission study of fatigue crack propagation in Q345R [J]. Chin. J. Eng., 2015, 37(12): 1588
柴孟瑜, 段 权, 张早校. Q345R疲劳裂纹扩展过程的声发射研究 [J]. 工程科学学报, 2015, 37(12): 1588
[44] Zhu R H, Gang T. Fatigue crack propagation of aluminum alloy based on acoustic emission monitoring [J]. Trans. China Weld. Inst., 2013, 34(3): 29
朱荣华, 刚 铁. 铝合金疲劳裂纹扩展声发射监测 [J]. 焊接学报, 2013, 34(3): 29
[45] Yu J G, Ziehl P. Stable and unstable fatigue prediction for A572 structural steel using acoustic emission [J]. J. Constr. Steel Res., 2012, 77: 173
[46] Han W L, Xi J H. Chaotic characteristics extracting and trend analysis on acoustic emission signal of tool condition [J]. J. Shenyang Inst. Aeronaut. Eng., 2010, 27(4): 74
韩文兰, 席剑辉. 刀具声发射信号混沌特征提取及趋势分析 [J]. 沈阳航空工业学院学报, 2010, 27(4): 74
[47] Bukkapatnam S T S, Kumara S R T, Lakhtakia A. Analysis of acoustic emission signals in machining [J]. J. Manuf. Sci. Eng., 1999, 121(4): 568
[48] Jiang X X, Cao J Y, Li R, et al. Fault diagnosis of air compressor based on AE signals and correlation dimension [J]. J. Mech. Strength, 2011, 33(6): 803
蒋旭鑫, 曹军义, 李 锐 等. 基于声发射和关联维数的空气压缩机故障诊断技术研究 [J]. 机械强度, 2011, 33(6): 803
[49] Guan S, Peng C. Chaotic characteristic analysis of tool wear acoustic emission signal [J]. Trans. Chin. Soc. Agric. Eng., 2015, 31(11): 60
[50] Cheng X M, Hu F, Deng A D, et al. Characteristic analysis and localization of acoustic emission source based on chaos theory [J]. China Mech. Eng., 2011, 22(9): 1013
成新民, 胡 峰, 邓艾东 等. 基于混沌理论的碰摩声发射特征分析与源定位 [J]. 中国机械工程, 2011, 22(9): 1013
[51] Liu Z, Jiang Y, Zou S Y, et al. Chaos analysis on acoustic emission signals of Francis turbine under cavitation [J]. J. Chin. Soc. Power Eng., 2021, 41(7): 609
刘 忠, 蒋 盈, 邹淑云 等. 混流式水轮机空化声发射信号的混沌特性分析 [J]. 动力工程学报, 2021, 41(7): 609
[52] Chen Y, Yang J R, Jin R X, et al. Experimental Study on acoustic emission signals during glunting process of grinding wheels based on chaos theory [J]. Noise Vib. Control, 2022, 42(5): 148
陈 芸, 杨嘉睿, 金容鑫 等. 基于混沌理论砂轮磨钝过程声发射信号试验研究 [J]. 噪声与振动控制, 2022, 42(5): 148
[53] Mao X D, Yuan H Q, Sun H G. Relevancy of correlation dimension and Kolmogorov entropy in state of gearbox discrimination [J]. Mach. Tool Hydraul., 2015, 43(13): 189
毛向东, 袁惠群, 孙华刚. 关联维数和Kolmogorov熵在变速箱状态判别中的关联性 [J]. 机床与液压, 2015, 43(13): 189
[54] Bai L, Liang P. Kolmogorov entropy diagnosis for vibration faults of turbine rotor based on wavelet packet filtering [J]. J. Vib. Shock, 2008, 27(5): 148
白 蕾, 梁 平. 基于小波包滤波的汽轮机转子振动故障的Kolmogorov熵诊断 [J]. 振动与冲击, 2008, 27(5): 148
[55] Yang S X, Wang W J. Kolmogorov entropy and its application to the diagnosis of mechanical faults [J]. Mech. Sci. Technol., 2000, 19(1): 6
杨世锡, 汪慰军. 柯尔莫哥洛夫熵及其在故障诊断中的应用 [J]. 机械科学与技术, 2000, 19(1): 6
[56] Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from a chaotic signal [J]. Phys. Rev., 1983, 28A(4) : 2591
[57] Schouten J C, Takens F, van den Bleek C M. Maximum-likelihood estimation of the entropy of an attractor [J]. Phys. Rev., 1994, 49E(1) : 126
[58] Daw C S, Thomas J F, Richards G A, et al. Chaos in thermal pulse combustion [J]. Chaos, 1995, 5(4): 662
pmid: 12780223
[1] CUI Huaiyun, LIU Zhiyong, LU Lin. Critical Corrosion Factors for J55 Tubing Steel in a Simulated Annulus Environment of CO2 Injection Well[J]. 材料研究学报, 2024, 38(4): 308-320.
[2] LI Feiyang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, TANG Yanbing. Passivation Behavior of Laser Selective Melted 316L Stainless Steel in Sulphuric Acid Containing Chloride Ion Solution[J]. 材料研究学报, 2024, 38(3): 221-231.
[3] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[4] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[5] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[6] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[7] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[9] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[10] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] LIU Xiaoyan, LIU Kuijun, YANG Xirong, WANG Jingzhong, LUO Lei. Fatigue Crack Propagation Behavior of Ultrafine Grained Pure Titanium[J]. 材料研究学报, 2020, 34(6): 417-424.
[12] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[13] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[14] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[15] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
No Suggested Reading articles found!