|
|
Properties Optimization of 9CrV Steel for Large Piston Based on Microstructure and Structure Control |
WANG Lei1, ZHANG Bo1, ZHANG Baoyan2, LIU Yang1( ), SONG Xiu1, LI Yongsheng2 |
1.Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819, China 2.Shandong Tianrui Heavy Industry Co. Ltd., Weifang 261061, China |
|
Cite this article:
WANG Lei, ZHANG Bo, ZHANG Baoyan, LIU Yang, SONG Xiu, LI Yongsheng. Properties Optimization of 9CrV Steel for Large Piston Based on Microstructure and Structure Control. Chinese Journal of Materials Research, 2023, 37(11): 827-836.
|
Abstract In order to solve the imbalance between strength and toughness in different cross sections of a large size piston for hydraulic crushing hammer, the influence of heat treatment and microstructural adjustmen/control on the microstructure and mechanical properties of 9CrV steel near-real shaped piston with a diameter of 190 mm was studied. The results show that when the piston were austenitized at 850℃ for 5 h and quenched at 230℃ for 4 h, then tempered at 230℃ for 4 h, the microstructure of a piston consists of bainite, bainite + troostite + residual austenite and pearlite respectively, from the surface to the core. The tensile strength of the piston surface layer is 1442 MPa, the impact absorbed energy is 11 J, the impact toughness in the piston core part is poor, and the impact toughness is the lowest at 2/3 R of the piston. When the austenitizing temperature is decreased to 800℃ and tempering temperature is increased to 400℃, the tensile strength of the piston surface layer increased to 1610 MPa, and the impact absorbed energy decreased to 7.4 J. The impact toughness of the piston core shows an increasing tendency, while the strength will decrease. When the piston is austenitized at 800℃ for 5 h and followed by quenching at 230℃ for 4 h, then tempering first at 230℃ for 4 h and then at 400℃ for 4 h, the tensile strength of the piston surface layer becomes 1672 MPa, the impact absorbed energy becomes 9.8 J. The impact toughness of piston core part has been improved, and the combination of strength and toughness of the piston tend to balance. It is found that with the lower austenitizing temperature a large number of undissolved carbide particles will be retained, it will hinder austenite growing, but refine grains. With the increasing tempering temperature, the dislocation tangles to pearlite ferrite will be restored, and the toughness of piston core can be improved. The carbon-rich residual austenite film in the bainite of piston surface layer is stable. When it is tempered at 400℃, the carbide thin film will precipitate during the decomposition of residual austenite, which is easy to become a rapid crack propagation path and reduce the impact toughness. The residual austenite was transformed into lower bainite by tempering at 230℃ to prevent the formation of thin-film carbides by tempered at 400℃ to improve the impact resistance of piston core, so that the toughness becomes balance in the different cross section parts of a piston. Based on the combination of optimizing and controlling of piston microstructure and heat treatment process, the strength and toughness of the piston are balanced.
|
Received: 14 November 2022
|
|
Fund: National Natural Science Foundation of China(U1708253);Program Projects of Taishan Industry Leading Talent(tscy20170318) |
Corresponding Authors:
LIU Yang, Tel: (024)83672799, E-mail: liuyang@mail.neu.edu.cn
|
1 |
Luo M. Current situation and development trend of domestic hydraulic crusher market [J]. Mechanical Engineering, 2004, 16(10):19
|
|
罗 铭. 国内液压破碎器市场现状及发展趋势 [J]. 机械工程, 2004, 16(10): 19
|
2 |
Zhang D J. Status and classification of hydraulic crushing hammer in China [J]. Jiangsu Metallurgy, 2008, 13(03): 4
|
|
张定军. 国内液压破碎锤的现状及分类 [J]. 江苏冶金, 2008, 13(03): 4
|
3 |
Wen Y M. Causes and countermeasures of piston failure of hydraulic crushing hammer [J]. Construction Machinery and Maintenance, 2006, 15(12): 149
|
|
温玉民. 液压破碎锤活塞失效的原因及对策 [J]. 工程机械与维修, 2006, 15(12): 149
|
4 |
Uesugi T. Recent development of bearing steel in Japan [J]. The Iron and Steel Institute of Japan, 1988, 28(11): 893
|
5 |
Yang G P, Chai R. Some key technologies for design and manufacture of hydraulic crushing hammer impact piston [J]. Machine Tool and Hydraulics, 2008, 36(6): 62
|
|
杨国平, 柴 睿. 液压破碎锤冲击活塞设计与制造的若干关键技术 [J]. 机床与液压, 2008, 36(6): 62
|
6 |
Zhou Z H, Gao L W, Xu T L, et al. Development and present situation analysis of hydraulic crushing hammer in China [J]. Construction Machinery, 2004, 42(8): 34
|
|
周志鸿, 高丽稳, 许同乐 等. 我国液压破碎锤发展与现状分析[J]. 工程机械, 2004, 42(8): 34
|
7 |
Li D H, Li Z M, Xiao M G, et al. Effect of deep cryogenic treatment on mechanical property and microstructure of a low carbon high alloy martensitic bearing steel during tempering [J]. Chinese Journal of Materials Research, 2019, 33(8): 561
doi: 10.11901/1005.3093.2019.095
|
|
李东辉, 李志敏, 肖茂果 等. 深冷处理对低碳高合金马氏体轴承钢力学性能及组织的影响 [J]. 材料研究学报, 2019, 33(8): 561
doi: 10.11901/1005.3093.2019.095
|
8 |
Zhao K L, Liu Y B, Yu X F, et al. Effect of solid solution and mesothermal phase transition treatment on microstructure and mechanical property of ball bearing steel 8Cr4Mo4V [J]. Chinese Journal of Materials Research, 2018, 32(3): 200
|
|
赵开礼, 刘永宝, 于兴福 等. 固溶温度对8Cr4Mo4V轴承钢的中温相转变和力学性能的影响 [J]. 材料研究学报, 2018, 32(3): 200
doi: 10.11901/1005.3093.2017.605
|
9 |
Wang L, Lu H Q, Zhang B Y, et al. Microstructure and mechanical properties of 9CrV steel controlled by heat treatment process [J]. Transactions of Materials and Heat Treatment, 2021, 42(11): 69
doi: 10.13289/j.issn.1009-6264.2021-0234
|
|
王 磊, 路昊青, 张宝燕 等. 热处理工艺调控9CrV钢显微组织及力学性能 [J]. 材料热处理学报, 2021, 42(11): 69
|
10 |
Tu M Y, Hsu C A, Wang W H, et al. Comparison of microstructure and mechanical behavior of lower bainite and tempered martensite in JIS SK5 steel [J]. Mater. Chem. Phys., 2008, 107(2-3): 418
doi: 10.1016/j.matchemphys.2007.08.017
|
11 |
Fang H S, Wang J J, Zheng Y K, et al. Source and formation mechanism of bainite carbides in 200Cr12 steel [J]. Acta. Metall. Sin., 1993(10): 17
|
|
方鸿生, 王家军, 郑燕康 等. 200Cr12钢下贝氏体碳化物来源及形成机制 [J]. 金属学报, 1993(10): 17
|
12 |
Wang L. Mechanical Properties of Materials[M]. Shenyang: Northeastern University Press, 2014
|
|
王 磊. 材料的力学性能 [M]. 沈阳: 东北大学出版社, 2014
|
13 |
Cui Y X, Wang C L. Analysis of Metal Fracture [M]. Harbin: Harbin Institute of Technology Press, 1998: 41
|
|
崔约贤, 王长利. 金属断口分析 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1998: 41
|
14 |
Sankaran S, Sarma V S, Padmanabhan K A, et al. Low cycle fatigue behavior of a multiphase microalloyed medium carbon steel: comparison between fer-rite-pearlite and quenched and tempered microstructures [J]. Mater. Sci. Eng. A, 2003, 345(1-2): 328
doi: 10.1016/S0921-5093(02)00511-7
|
15 |
Cui Z Q, Liu B X. Metal Science and Principle of Heat Treatment [M]. Harbin: Harbin Institute of Technology Press, 2004
|
|
崔忠圻, 刘北兴. 金属学与热处理原理 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2004
|
16 |
Peng L G, Liu W J, Liu X H, et al. Experimental study on the effect of retained austenite on the impact toughness of a low-carbon martensite steel [J]. Advanced Materials Research, 2015, 1095: 119
doi: 10.4028/www.scientific.net/AMR.1095
|
17 |
Fang H S, Feng C, Zhang Y K, et al. Precipition of the carbides in lower bainite [J]. Acta. Metall. Sin., 2007(06): 583
|
|
方鸿生, 冯 春, 郑燕康 等. 下贝氏体中碳化物的析出 [J]. 金属学报, 2007(06): 583
|
18 |
Chakraborty J, Bhattacharjee D, Manna I. Austempering of bearing steel for improved mechanical properties [J]. Scr. Mater., 2008, 59(2): 247
doi: 10.1016/j.scriptamat.2008.03.023
|
19 |
Xu L J, Shi P Z, Zhang S L. Microstructure evolution mechanism of HSLA steel [J]. Journal of Iron and Steel Research, 2019, 31(11): 9
|
|
徐李军, 时朋召, 张淑兰. 低合金高强钢微观组织转变机制 [J]. 钢铁研究学报, 2019, 31(11): 9
|
20 |
Hu G L, Liu Z T, Wang P, et al. Temper bainite brittleness of structural steels [J]. Acta. Metall. Sin., 1989(02): 34
|
|
胡光立, 刘正堂, 王 平 等. 几种结构钢的回火贝氏体脆性 [J]. 金属学报, 1989(02): 34
|
21 |
Wu Y J, Zhou S B, Wu K M. Microstructure and properties of high carbon bainite steel at low temperature [J]. Journal of Iron and Steel Research, 2019, 31(12): 1058
|
|
吴亚杰, 周松波, 吴开明. 高碳贝氏体钢的低温转变组织与性能 [J]. 钢铁研究学报, 2019, 31(12): 1058
|
22 |
Wan X L, Hu F, Cheng L, et al. Influence of low-temperature bainite transformation on toughness of medium-carbon steel [J]. Journal of Iron and Steel Research, 2019, 31(10): 928
|
|
万响亮, 胡 锋, 成 林 等. 低温贝氏体转变对中碳钢韧性的影响 [J]. 钢铁研究学报, 2019, 31(10): 928
|
23 |
Yi L, Peng J M, Wang H B, et al. Effect of tempering on microstructure and mechanical properties of a nonquenched bainitic steel [J]. Mater. Sci. Eng. A, 2010, 527(15): 3433
doi: 10.1016/j.msea.2010.02.010
|
24 |
Sun S H, Zhao A M, Ding R, et al. Effect of heat treatment on microstructure and mechanical properties of quenching and partitioning steel [J]. Acta Metall. Sin. Engl. Lett., 2018, 31(2): 216
|
25 |
Xu Z B, Hui W J, Wang Z H, et al. Mechanical properties of a microalloyed bainitic steel after hot forging and tempering [J]. J. Iron Steel Res. Int., 2017, 24: 1085
doi: 10.1016/S1006-706X(17)30158-9
|
26 |
Korda A A, Muto Y, Miyashita Y, et al. In situ observation of fatigue crack retardation in banded ferrite-pearlite microstructure due to crack branching [J]. Scr. Mater., 2006, 54(11): 1835
doi: 10.1016/j.scriptamat.2006.02.025
|
27 |
Khiratkar V, Vaibhav N, Mishra K, et al. Effect of inter-lamellar spacing and test temperature on the Charpy impact energy of extremely fine pearlite [J]. Mater. Sci. Eng. A, 2019, 754: 622
doi: 10.1016/j.msea.2019.03.121
|
28 |
Wang X B, Liu C B, Qin Y M, et al. Effect of tempering temperature on microstructure and mechanical properties of nanostructured bainitic steel [J]. Mater. Sci. Eng. A, 2022, 832: 142357
doi: 10.1016/j.msea.2021.142357
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|