Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (11): 827-836    DOI: 10.11901/1005.3093.2022.599
ARTICLES Current Issue | Archive | Adv Search |
Properties Optimization of 9CrV Steel for Large Piston Based on Microstructure and Structure Control
WANG Lei1, ZHANG Bo1, ZHANG Baoyan2, LIU Yang1(), SONG Xiu1, LI Yongsheng2
1.Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819, China
2.Shandong Tianrui Heavy Industry Co. Ltd., Weifang 261061, China
Cite this article: 

WANG Lei, ZHANG Bo, ZHANG Baoyan, LIU Yang, SONG Xiu, LI Yongsheng. Properties Optimization of 9CrV Steel for Large Piston Based on Microstructure and Structure Control. Chinese Journal of Materials Research, 2023, 37(11): 827-836.

Download:  HTML  PDF(29496KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to solve the imbalance between strength and toughness in different cross sections of a large size piston for hydraulic crushing hammer, the influence of heat treatment and microstructural adjustmen/control on the microstructure and mechanical properties of 9CrV steel near-real shaped piston with a diameter of 190 mm was studied. The results show that when the piston were austenitized at 850℃ for 5 h and quenched at 230℃ for 4 h, then tempered at 230℃ for 4 h, the microstructure of a piston consists of bainite, bainite + troostite + residual austenite and pearlite respectively, from the surface to the core. The tensile strength of the piston surface layer is 1442 MPa, the impact absorbed energy is 11 J, the impact toughness in the piston core part is poor, and the impact toughness is the lowest at 2/3 R of the piston. When the austenitizing temperature is decreased to 800℃ and tempering temperature is increased to 400℃, the tensile strength of the piston surface layer increased to 1610 MPa, and the impact absorbed energy decreased to 7.4 J. The impact toughness of the piston core shows an increasing tendency, while the strength will decrease. When the piston is austenitized at 800℃ for 5 h and followed by quenching at 230℃ for 4 h, then tempering first at 230℃ for 4 h and then at 400℃ for 4 h, the tensile strength of the piston surface layer becomes 1672 MPa, the impact absorbed energy becomes 9.8 J. The impact toughness of piston core part has been improved, and the combination of strength and toughness of the piston tend to balance. It is found that with the lower austenitizing temperature a large number of undissolved carbide particles will be retained, it will hinder austenite growing, but refine grains. With the increasing tempering temperature, the dislocation tangles to pearlite ferrite will be restored, and the toughness of piston core can be improved. The carbon-rich residual austenite film in the bainite of piston surface layer is stable. When it is tempered at 400℃, the carbide thin film will precipitate during the decomposition of residual austenite, which is easy to become a rapid crack propagation path and reduce the impact toughness. The residual austenite was transformed into lower bainite by tempering at 230℃ to prevent the formation of thin-film carbides by tempered at 400℃ to improve the impact resistance of piston core, so that the toughness becomes balance in the different cross section parts of a piston. Based on the combination of optimizing and controlling of piston microstructure and heat treatment process, the strength and toughness of the piston are balanced.

Key words:  metallic materials      9CrV steel      larger-size tracer piston      mechanical properties      twice tempering     
Received:  14 November 2022     
ZTFLH:  TG142.3  
Fund: National Natural Science Foundation of China(U1708253);Program Projects of Taishan Industry Leading Talent(tscy20170318)
Corresponding Authors:  LIU Yang, Tel: (024)83672799, E-mail: liuyang@mail.neu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.599     OR     https://www.cjmr.org/EN/Y2023/V37/I11/827

CSiMnCrVSPFe
0.8650.3260.3071.8630.1010.0030.012Bal.
Table 1  Chemical compositions of 9CrV steel (atomic fraction, %)
No.Quenching temperature / ℃Quenching heating and holding time / hSalt bath temperature / ℃Salt bath insulation time / hTempering heating temperature / ℃Tempering holding time / hSecondary tempering heating temperature / ℃Secondary tempering holding time / h
1#850523042304--
2#800523044004--
3#8005230423044004
Table 2  Heat treatment parameters for the 9CrV steel
Fig.1  OM images of 9CrV steel piston at different radial positions (a) surface layer, (b) 12 mm from the piston surface, (c) 20 mm from the piston surface, (d) 24 mm from the piston surface, (e) 30 mm from the piston surface and (f) piston core
Fig.2  SEM images of 9CrV steel piston at different radial positions (a) surface layer; (b) 12 mm from the piston surface; (c) 20 mm from the piston surface; (d) 24 mm from the piston surface; (e) 30 mm from the piston surface and (f) piston core
Fig.3  SEM images of microstructure in various positions of 9CrV steel piston under different heat treatment conditions
Fig.4  Mechanical properties of 9CrV steel piston at different positions with different heat treatment processes: (a) hardness; (b) yield strength; (c) tensile strength; (d) impact absorbed energy
Fig.5  Microstructure at 20 mm from the piston surface (a) confocal laser image and (b) low-magnification SEM image
Fig.6  Pearlite lamellar spacing (a) and carbide lamellar width (b) of 9CrV steel piston at different positions with different heat treatment processes
Fig.7  Impact fracture morphology of 9CrV steel piston surface layer under different heat treatment (a-c) 1#; (d-f) 2#; (g-i) 3#
Fig.8  Impact fracture morphology of 9CrV steel piston at 30 mm from the piston surface and transition part under different heat treatment (a-c) 1#, piston 2/3 R; (d-f) 2#, piston 2/3 R; (g-i) 3#, piston transition
Fig.9  Button-hole piston: schematic diagram of structure (a) and hardness distribution in radial direction (b)
1 Luo M. Current situation and development trend of domestic hydraulic crusher market [J]. Mechanical Engineering, 2004, 16(10):19
罗 铭. 国内液压破碎器市场现状及发展趋势 [J]. 机械工程, 2004, 16(10): 19
2 Zhang D J. Status and classification of hydraulic crushing hammer in China [J]. Jiangsu Metallurgy, 2008, 13(03): 4
张定军. 国内液压破碎锤的现状及分类 [J]. 江苏冶金, 2008, 13(03): 4
3 Wen Y M. Causes and countermeasures of piston failure of hydraulic crushing hammer [J]. Construction Machinery and Maintenance, 2006, 15(12): 149
温玉民. 液压破碎锤活塞失效的原因及对策 [J]. 工程机械与维修, 2006, 15(12): 149
4 Uesugi T. Recent development of bearing steel in Japan [J]. The Iron and Steel Institute of Japan, 1988, 28(11): 893
5 Yang G P, Chai R. Some key technologies for design and manufacture of hydraulic crushing hammer impact piston [J]. Machine Tool and Hydraulics, 2008, 36(6): 62
杨国平, 柴 睿. 液压破碎锤冲击活塞设计与制造的若干关键技术 [J]. 机床与液压, 2008, 36(6): 62
6 Zhou Z H, Gao L W, Xu T L, et al. Development and present situation analysis of hydraulic crushing hammer in China [J]. Construction Machinery, 2004, 42(8): 34
周志鸿, 高丽稳, 许同乐 等. 我国液压破碎锤发展与现状分析[J]. 工程机械, 2004, 42(8): 34
7 Li D H, Li Z M, Xiao M G, et al. Effect of deep cryogenic treatment on mechanical property and microstructure of a low carbon high alloy martensitic bearing steel during tempering [J]. Chinese Journal of Materials Research, 2019, 33(8): 561
doi: 10.11901/1005.3093.2019.095
李东辉, 李志敏, 肖茂果 等. 深冷处理对低碳高合金马氏体轴承钢力学性能及组织的影响 [J]. 材料研究学报, 2019, 33(8): 561
doi: 10.11901/1005.3093.2019.095
8 Zhao K L, Liu Y B, Yu X F, et al. Effect of solid solution and mesothermal phase transition treatment on microstructure and mechanical property of ball bearing steel 8Cr4Mo4V [J]. Chinese Journal of Materials Research, 2018, 32(3): 200
赵开礼, 刘永宝, 于兴福 等. 固溶温度对8Cr4Mo4V轴承钢的中温相转变和力学性能的影响 [J]. 材料研究学报, 2018, 32(3): 200
doi: 10.11901/1005.3093.2017.605
9 Wang L, Lu H Q, Zhang B Y, et al. Microstructure and mechanical properties of 9CrV steel controlled by heat treatment process [J]. Transactions of Materials and Heat Treatment, 2021, 42(11): 69
doi: 10.13289/j.issn.1009-6264.2021-0234
王 磊, 路昊青, 张宝燕 等. 热处理工艺调控9CrV钢显微组织及力学性能 [J]. 材料热处理学报, 2021, 42(11): 69
10 Tu M Y, Hsu C A, Wang W H, et al. Comparison of microstructure and mechanical behavior of lower bainite and tempered martensite in JIS SK5 steel [J]. Mater. Chem. Phys., 2008, 107(2-3): 418
doi: 10.1016/j.matchemphys.2007.08.017
11 Fang H S, Wang J J, Zheng Y K, et al. Source and formation mechanism of bainite carbides in 200Cr12 steel [J]. Acta. Metall. Sin., 1993(10): 17
方鸿生, 王家军, 郑燕康 等. 200Cr12钢下贝氏体碳化物来源及形成机制 [J]. 金属学报, 1993(10): 17
12 Wang L. Mechanical Properties of Materials[M]. Shenyang: Northeastern University Press, 2014
王 磊. 材料的力学性能 [M]. 沈阳: 东北大学出版社, 2014
13 Cui Y X, Wang C L. Analysis of Metal Fracture [M]. Harbin: Harbin Institute of Technology Press, 1998: 41
崔约贤, 王长利. 金属断口分析 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1998: 41
14 Sankaran S, Sarma V S, Padmanabhan K A, et al. Low cycle fatigue behavior of a multiphase microalloyed medium carbon steel: comparison between fer-rite-pearlite and quenched and tempered microstructures [J]. Mater. Sci. Eng. A, 2003, 345(1-2): 328
doi: 10.1016/S0921-5093(02)00511-7
15 Cui Z Q, Liu B X. Metal Science and Principle of Heat Treatment [M]. Harbin: Harbin Institute of Technology Press, 2004
崔忠圻, 刘北兴. 金属学与热处理原理 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2004
16 Peng L G, Liu W J, Liu X H, et al. Experimental study on the effect of retained austenite on the impact toughness of a low-carbon martensite steel [J]. Advanced Materials Research, 2015, 1095: 119
doi: 10.4028/www.scientific.net/AMR.1095
17 Fang H S, Feng C, Zhang Y K, et al. Precipition of the carbides in lower bainite [J]. Acta. Metall. Sin., 2007(06): 583
方鸿生, 冯 春, 郑燕康 等. 下贝氏体中碳化物的析出 [J]. 金属学报, 2007(06): 583
18 Chakraborty J, Bhattacharjee D, Manna I. Austempering of bearing steel for improved mechanical properties [J]. Scr. Mater., 2008, 59(2): 247
doi: 10.1016/j.scriptamat.2008.03.023
19 Xu L J, Shi P Z, Zhang S L. Microstructure evolution mechanism of HSLA steel [J]. Journal of Iron and Steel Research, 2019, 31(11): 9
徐李军, 时朋召, 张淑兰. 低合金高强钢微观组织转变机制 [J]. 钢铁研究学报, 2019, 31(11): 9
20 Hu G L, Liu Z T, Wang P, et al. Temper bainite brittleness of structural steels [J]. Acta. Metall. Sin., 1989(02): 34
胡光立, 刘正堂, 王 平 等. 几种结构钢的回火贝氏体脆性 [J]. 金属学报, 1989(02): 34
21 Wu Y J, Zhou S B, Wu K M. Microstructure and properties of high carbon bainite steel at low temperature [J]. Journal of Iron and Steel Research, 2019, 31(12): 1058
吴亚杰, 周松波, 吴开明. 高碳贝氏体钢的低温转变组织与性能 [J]. 钢铁研究学报, 2019, 31(12): 1058
22 Wan X L, Hu F, Cheng L, et al. Influence of low-temperature bainite transformation on toughness of medium-carbon steel [J]. Journal of Iron and Steel Research, 2019, 31(10): 928
万响亮, 胡 锋, 成 林 等. 低温贝氏体转变对中碳钢韧性的影响 [J]. 钢铁研究学报, 2019, 31(10): 928
23 Yi L, Peng J M, Wang H B, et al. Effect of tempering on microstructure and mechanical properties of a nonquenched bainitic steel [J]. Mater. Sci. Eng. A, 2010, 527(15): 3433
doi: 10.1016/j.msea.2010.02.010
24 Sun S H, Zhao A M, Ding R, et al. Effect of heat treatment on microstructure and mechanical properties of quenching and partitioning steel [J]. Acta Metall. Sin. Engl. Lett., 2018, 31(2): 216
25 Xu Z B, Hui W J, Wang Z H, et al. Mechanical properties of a microalloyed bainitic steel after hot forging and tempering [J]. J. Iron Steel Res. Int., 2017, 24: 1085
doi: 10.1016/S1006-706X(17)30158-9
26 Korda A A, Muto Y, Miyashita Y, et al. In situ observation of fatigue crack retardation in banded ferrite-pearlite microstructure due to crack branching [J]. Scr. Mater., 2006, 54(11): 1835
doi: 10.1016/j.scriptamat.2006.02.025
27 Khiratkar V, Vaibhav N, Mishra K, et al. Effect of inter-lamellar spacing and test temperature on the Charpy impact energy of extremely fine pearlite [J]. Mater. Sci. Eng. A, 2019, 754: 622
doi: 10.1016/j.msea.2019.03.121
28 Wang X B, Liu C B, Qin Y M, et al. Effect of tempering temperature on microstructure and mechanical properties of nanostructured bainitic steel [J]. Mater. Sci. Eng. A, 2022, 832: 142357
doi: 10.1016/j.msea.2021.142357
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
No Suggested Reading articles found!