Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (11): 818-826    DOI: 10.11901/1005.3093.2022.596
ARTICLES Current Issue | Archive | Adv Search |
Effect of Si on Precipitation Behavior of Precipitated Phases and Mechanical Property of 9Cr-type Ferritic/Martensitic Steel
LI Feng1,2,3, WANG Jianqiang1,2, CHEN Huiqin3, SUN Mingyue1,2(), XU Bin1,2, LIU Zhaohui1,2
1.Key Laboratory of Nuclear Materials and Safety, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Shenyang National Research Center for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Taiyuan University of Science and Technology, School of Materials Science and Engineering, Taiyuan 030024, China
Cite this article: 

LI Feng, WANG Jianqiang, CHEN Huiqin, SUN Mingyue, XU Bin, LIU Zhaohui. Effect of Si on Precipitation Behavior of Precipitated Phases and Mechanical Property of 9Cr-type Ferritic/Martensitic Steel. Chinese Journal of Materials Research, 2023, 37(11): 818-826.

Download:  HTML  PDF(23327KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ferritic martensitic (F/M) steel is one of the main candidates for structural components of lead-bismuth fast reactors. Increasing the Si content can enhance the resistance of the material to Pb-Bismuth corrosion, but it also affects the precipitation behavior of precipitates and mechanical properties of the material. In this paper, four ingots of F/M steels with different Si contents (0.9%, 1.2%, 1.5% and 1.8% by mass fraction) were vacuum melted and cast, and then forged to generate blocks, afterwards, the steels were subjected to the following heat treatment process: water cooling after solution treatment at 1050℃ for 30 min, and then air cooling after tempering at 760℃ for 90 min. The effect of the Si addition on the precipitation behavior of precipitates and mechanical properties of 9Cr type F/M steel was carefully examined. The results show that the precipitated phases of 9Cr type F/M steel with different Si contents are M23C6, MX and Laves phases, and the presence of Si can promote the precipitation of Laves phase and M23C6 carbide. When the Si content is 0.9%~1.2%, the tensile strength and elongation of the steel are slightly reduced, and the impact performance remains stable; when the Si content is 1.2%~1.8%, the solid solution strengthening of Si and the precipitation strengthening of the precipitates make the strength of the steel increase, but with the increase of Si content, Laves phase and M23C6 type carbide precipitates a lot, and the impact energy decreases significantly.

Key words:  metallic materials      ferritic martensitic steel      Si content      precipitates      tensile strength      impact property     
Received:  10 November 2022     
ZTFLH:  TG142.1  
Fund: National Key R&D Program(2018YFA0702900);CNNC Leads the Scientific Research Project(E24L809);Innovation Fund of Institute of Metal Research, Chinese Academy of Sciences(2022-PY12)
Corresponding Authors:  SUN Mingyue, E-mail: mysun@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.596     OR     https://www.cjmr.org/EN/Y2023/V37/I11/818

AlloySiCVCrMnWTaFe
0.9Si0.910.160.208.560.591.480.14Bal.
1.2Si1.220.170.208.560.581.500.14Bal.
1.5Si1.520.210.198.570.591.480.15Bal.
1.8Si1.810.230.208.500.601.460.15Bal.
Table 1  Chemical composition of F/M steel with different Si content (atomic fraction, %)
Fig.1  Backscattered electron images of F/M steel with different Si content (a) 0.9Si, (b) 1.2Si, (c) 1.5Si, (d) 1.8Si
AlloyCCrSiFeVTaW
0.9Si11.264.362.0125.150.8750.635.73
1.2Si10.593.892.1522.210.7654.415.98
1.5Si10.405.122.2421.030.8153.625.78
1.8Si8.975.372.2733.070.8543.236.24
Table 2  Laves phase element scan results (atomic fraction, %)
Fig.2  Secondary electron images of precipitated phases in F/M steel with different Si content (a) 0.9Si; (b) 1.2Si; (c) 1.5Si; (d) 1.8Si
Fig.3  TEM images in F/M steel with different Si content (a) 0.9Si; (b) 1.2Si; (c) 1.5Si; (d) 1.8Si
Fig.4  Typical EDS surface distribution of precipitation phase of steel with 1.2Si
Fig.5  Rod-like precipitation phase in 1.2Si (a) and high-resolution images of the selected area and electron diffraction of the selected area in which (b)
Fig.6  Average length and area fraction of M23C6 in F/M steel
Fig.7  Room temperature tensile propert of F/M steel
Fig.8  Room temperature impact properties of F/M steel
Fig.9  Secondary electron images of impact fracture of F/M steel with different Si content (a)、(b) 0.9Si; (c)、(d) 1.2Si; (e)、(f) 1.5Si; (g)、(h) 1.8Si
1 Zohuri Bahman. 6 - Generation IV nuclear reactors [J]. Woodhead Publishing Series in Energy, 2020: 213
2 Zhang J. A review of steel corrosion by liquid lead and lead-bismuth [J]. Corros. Sci, 2009, 51: 1207
doi: 10.1016/j.corsci.2009.03.013
3 Yao S W, Wang H, Wang S L. Research and application of special ceramic materials [J]. Yunnan Metallurgy, 2007(04): 53
尧世文, 王 华, 王胜林. 特种陶瓷材料的研究与应用 [J]. 云南冶金, 2007(04): 53
4 Lv Z. Development and foresight of nanostructured ODS steel for the first wall of fusion reactors [J]. Atomic Energy Science and Technology, 2011, 45(9): 1105
吕 铮. 聚变堆第一壁用纳米结构ODS钢的发展与前瞻 [J]. 原子能科学技术, 2011, 45(9): 1105
5 Buckthorpe D, Aitkaliyeva A, HE L, et al. Structural Materials for Generation Ⅳ Nuclear Reactors [M]. UK: Woodhead Publishing, 2017
6 Kurata Y. Corrosion behavior of Si-enriched steels for nuclear applications in liquid lead-bismuth [J]. J. Nucl. Mater., 2013, 437(1-3): 401
doi: 10.1016/j.jnucmat.2013.02.022
7 Kondo M, Takahashi M. Corrosion resistance of Si- and Al-rich steels in flowing lead-bismuth [J]. J. Nucl. Mater., 2006, 356(1): 203
doi: 10.1016/j.jnucmat.2006.05.019
8 Park J J, Butt D P, Beard C A. Review of liquid metal corrosion issues for potential containment materials for liquid lead and lead-bismuth eutectic spallation targets as a neutron source [J]. Nucl. Eng. Des., 2000, 196(3): 315
doi: 10.1016/S0029-5493(99)00303-9
9 Tortorelli P F, Chopra O K. Corrosion and compatibility considerations of liquid metals for fusion reactor applications [J]. J. Nucl. Mater., 1981, 103: 621
doi: 10.1016/0022-3115(82)90668-7
10 Muller G, Heinzel A, Markov V, et al. Results of steel corrosion tests in flowing liquid Pb/Bi at 420-600℃ after 2000 h [J]. J. Nucl. Mater., 2002, 301: 40
doi: 10.1016/S0022-3115(01)00725-5
11 Chen S H, Rong L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel [J]. J. Nucl. Mater., 2015, 459: 13
doi: 10.1016/j.jnucmat.2015.01.004
12 Anya C C, Baker T N. The effect of silicon on the grain size and the tensile properties of low carbon steels [J]. Mater. Sci. Eng.A, 1989, 118: 197
13 Chen G Q, Yang J, Wang Q, et al. Effect of Si elements on the evolution of the second phase organization of 11.5CrMox Si ferritic martensitic steel [J]. Hot Working Technology, 2020, 49(24): 41
陈国清, 杨 俭, 王 清 等. Si元素对11.5CrMox Si铁素体马氏体钢第二相组织演变的影响 [J]. 热加工工艺, 2020, 49(24): 41
14 Hosoi Y, Wade N, Kunimitsu S, et al. Precipitation behavior of laves phase and its effect on toughness of 9Cr-2Mo ferritic-martensitic steel [J]. J. Nucl. Mater., 1986, 141-143: 461
doi: 10.1016/S0022-3115(86)80083-6
15 Kipelova A, Kaibysheva R, Belyakova A, et al. Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions [J]. Mater. Sci. Eng. A, 2011, 528(3): 1280
doi: 10.1016/j.msea.2010.10.006
16 Prat O, Garcia J, Rojas D, et al. The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels [J]. Intermetallics, 2013, 32: 362
doi: 10.1016/j.intermet.2012.08.016
17 Xia Z X, Wang C Y, Zhao Y F, et al. Laves phase formation and its effect on mechanical properties in P91 steel [J]. Acta Metall. Sin., 2015, 28(10): 1238
doi: 10.1007/s40195-015-0318-5
18 Aghajani A, Richter F, Somsen C, et al. On the formation and gro-wth of Mo-rich Laves phase particles during long-term creep of a 12% chromium tempered martensite ferritic steel [J]. Scr. Mater., 2009, 61(11): 1068
doi: 10.1016/j.scriptamat.2009.08.031
19 Dimmler D, Weinert P, Kozeschnik E, et al. Quantification of the Laves phase in advanced 9-12%Cr steels using a standard SEM [J]. Mater. Charact. 2004, 5(51): 341
20 Isik M I, Kostka A, Eggeler G. On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels [J]. Acta Mater., 2014, 81: 230
doi: 10.1016/j.actamat.2014.08.008
21 Isik M I, Kostka A, Yardley V A, et al. The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12%Cr tempered martensite ferritic steels [J]. Acta Mater., 2015, 90: 94
doi: 10.1016/j.actamat.2015.01.027
22 Xu Y T, Nie Y H, Wang M J, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging [J]. Acta. Mater., 2017, 131: 110
doi: 10.1016/j.actamat.2017.03.045
23 Zhang L L. Study on the mechanism of Si element innuclear SIMP steel [D]. Hefei: University of Science and Technology of China, 2021
张玲玲. 核用SIMP钢中Si元素的作用机理研究 [D]. 合肥: 中国科学技术大学, 2021
24 Zhou J, Qiu S Y, Qiu R S, et al. Effect of Si content on microstructure and mechanical properties of 9%Cr ferritic martensitic steel[J]. Atomic Energy Science and Technology, 2022, 56(3): 520
周 军, 邱绍宇, 邱日盛 等. Si含量对9%Cr铁素体马氏体钢微观结构和力学性能的影响 [J]. 原子能科学技术, 2022, 56(3): 520
25 Chen J G, Liu C X, Wei C, et al. Effects of isothermal aging on microstructure and mechanical property of low-carbon RAFM steel[J]. Acta Metall. Sin., 32: 1151
26 Xu X F, Li X Y, Zhang B. Stabilizing nanograined Fe-Cr alloy by Si-assisted grain boundary segregation [J]. J. Mater. Sci. Technol., 2023, 134: 223
doi: 10.1016/j.jmst.2022.06.028
27 Sklenička V, Kuchařová K, Svoboda M, et al. Long-term creep behavior of 9-12%Cr power plant steels [J]. Mater. Charact., 2003, 51(1): 35
doi: 10.1016/j.matchar.2003.09.012
28 Zhu Z F, Zhao Z Z, Zhao A M, et al. Effect of Si on the organizational properties of high-strength hot-rolled duplex steels [J]. Steel Rolling, 2011, 28(2): 16
祝志峰, 赵征志, 赵爱民 等. Si对高强热轧双相钢组织性能的影响 [J]. 轧钢, 2011, 28(2): 16
29 Seung Lee Jae, Hassan Ghassemi Armaki, Kouichi Maruyamaet al. Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel [J]. Mater. Sci. Eng.A., 2006, 428(1-2): 270
30 Abe Fujio. Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels[J]. Mater. Sci. Eng.A., 2001, 319-321: 770
31 Hu P, Yan W, Shan Y Y, et al. Organizational evolution and mechanical properties of high-Cr ferritic heat-resistant steel during aging [J]. Guangdong Electric Power, 2011, 24(11): 6
胡 平, 严 伟, 单以银 等. 高Cr铁素体耐热钢时效过程中的组织演变与力学性能研究 [J]. 广东电力, 2011, 24(11): 6
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!