Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (11): 809-817    DOI: 10.11901/1005.3093.2022.568
ARTICLES Current Issue | Archive | Adv Search |
Effect of Post-Weld Heat Treatment on Microstructures and Mechanical Properties of Friction Stir Welded 7055-0.1Sc Aluminum Alloy
MA Junya1,2, ZHANG Zhen2(), LI Jingjing1, WANG Beibei2, WANG Yingjun3, XUE Peng2, LIU Fengchao2, NI Dingrui2, XIAO Bolv2, MA Zongyi2
1.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Northeast Light Alloy Co., LTD., Harbin 150060, China
Cite this article: 

MA Junya, ZHANG Zhen, LI Jingjing, WANG Beibei, WANG Yingjun, XUE Peng, LIU Fengchao, NI Dingrui, XIAO Bolv, MA Zongyi. Effect of Post-Weld Heat Treatment on Microstructures and Mechanical Properties of Friction Stir Welded 7055-0.1Sc Aluminum Alloy. Chinese Journal of Materials Research, 2023, 37(11): 809-817.

Download:  HTML  PDF(14376KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

7055-0.1Sc-T4 aluminum Al-alloy plates of 11 mm in thickness were firstly subjected to friction stir welding (FSW) and then the effect of post-weld heat treatment on the microstructure and mechanical properties of the FSW joints was investigated. The results show that for the as welded FSW joints, the hardness profiles distribution exhibited “W” shaped pattern with the low hardness zone (LHZ) on both the retreating (RS) and the advancing sides (AS), respectively. And the joints fractured at the LHZ on RS with the strength coefficient are 63.0%-73.8%. After the post-weld artificial aging at 120℃ for 12 h (AA), the hardness of the nugget zone (NZ) increased but the hardness of the LHZ, tensile properties and fracture location were unchanged. Solution treatment at 535℃ for 1.5 h+water quenching+artificial aging at 120℃ for 12 h (T6) did not change the grain structure of the joint under low welding speed of mm/min, but caused the abnormal grain growth at the bottom of the NZ under high welding speed of 250 mm/min. Moreover, T6 heat treatment resulted in the dissolution of the original precipitates and the re-precipitation of fine and uniform η′ and η (MgZn2) phases, and therefore significantly improved the hardness of the joints. The T6 joint cracked along the “S” line during tension with a seriously reduced plasticity and joint efficiency of 87%.

Key words:  metallic materials      friction stir welding      post-weld heat treatment      microstructure      mechanical properties     
Received:  25 October 2022     
ZTFLH:  TG457.14  
Fund: National Natural Science Foundation of China(52275392);Liaoning Province Excellent Youth Foundation(2021-YQ-01);Natural Science Foundation of Liaoning Province(2021-MS-011)
Corresponding Authors:  ZHANG Zhen, Tel: (024)23971752, E-mail: zhangzhen@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.568     OR     https://www.cjmr.org/EN/Y2023/V37/I11/809

ZnMgCuScZrSiFeMnAl
7.6~8.41.8~2.32.0~2.60.10.08~0.25≤0.1≤0.15≤0.05Bal.
Table 1  Chemical composition of 7055-0.1Sc-T4 plate (mass fraction, %)
Yield Strength / MPaTensile Strength / MPa

Elongation /

%

595±28635±369±5
Table 2  Tensile properties of 7055-0.1Sc-T4
Fig.1  Configuration and sizes of tensile specimen
Fig.2  Cross-sectional macrostructure of FSW 7055-0.1Sc-T4 joints (a) 500-100-AW, (b) 500-250-AW, (c) 500-100-T6, (d) 500-250-T6
Fig.3  Magnified of zones marked by the black arrows in Fig.2c, d
Fig.4  OM of different regions in the FSW joints (a) BM, (b)~(e) magnified NZ of position B~E in Fig.2
Fig.5  Pattern of “S” line in FSW 7055-0.1Sc-T4 joints (a) 500-100-AW, (b) 500-250-AW, (c) 500-100-T6, (d) 500-250-T6
Fig.6  Microhardness profile of FSW 7055-0.1Sc-T4 joints
Fig.7  TEM micrographs (a) BF and (b) associated diffraction patterns of BM; (c) NZ and (d) LHZ of 500-100-AW; (e) NZ and (f) LHZ of 500-100-T6
NumberSampleTensile Strength / MPaElongation / %Strength coefficient / %
1500-100-AW399.9±1.48.9±0.563.0%
2500-250-AW468.5±7.86.3±0.573.8%
3500-100-AA415.8±2.14.3±0.465.5%
4500-250-AA477.6±3.53.8±0.475.2%
5500-100-T6556.5±1.5Brittle fracture87.6%
6500-250-T6555.0±2.0Brittle fracture87.4%
Table 3  Transverse tensile properties of FSW 7055-0.1Sc-T4 joints under AW, AA and T6 states
Fig.8  Fracture locations of FSW 7055-0.1Sc-T4 joints (a) 500-100-AW, (b) 500-100-T6, (c) 500-250-T6
Fig.9  Fracture morphologies of FSW 7055-0.1Sc-T4 joints, macrographic of (a) 500-100-AW, (b) 500-250-T6; magnified micrographs of positions C-E: (c) position C, (d) position D, (e) position E
1 Schuster P A, österreicher J A, Kirov G, et al. Characterization and comparison of process chains for producing automotive structural parts from 7xxx aluminum sheets [J]. Metals, 2019, 9(3): 305
doi: 10.3390/met9030305
2 Peng X Y, Guo Q, Liang X P, et al. Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng. A, 2017, 688: 146
doi: 10.1016/j.msea.2017.01.086
3 Yu L B, Wang W Y, Wang J, et al. The effects of Sc addition on the microstructure and mechanical properties of Be-Al alloy fabricated by induction melting [J]. J. Mater. Eng. Perform., 2019, 28(4): 2378
doi: 10.1007/s11665-019-04004-3
4 Zhang J Y, Gao Y H, Yang C, et al. Microalloying Al alloys with Sc: a review [J]. Rare Met., 2020, 39(6): 636
doi: 10.1007/s12598-020-01433-1
5 Teng G B, Liu C Y, Li J, et al. Effect of Sc on microstructure and mechanical property of 7055 Al-alloy [J]. Chin. J. Mater. Res., 2018, 32(2): 112
doi: 10.11901/1005.3093.2017.233
滕广标, 刘崇宇, 李 剑 等. 添加Sc对7055铝合金微观结构和力学性能的影响 [J]. 材料研究学报, 2018, 32(2): 112
doi: 10.11901/1005.3093.2017.233
6 Mo Y F, Liu C Y, Teng G B, et al. Fabrication of 7075-0.25Sc-0.15Zr alloy with excellent damping and mechanical properties by FSP and T6 treatment [J]. J. Mater. Eng. Perform., 2018, 27(8):4162
doi: 10.1007/s11665-018-3451-2
7 Verma R P, Kumar Lila M. A short review on aluminum alloys and welding in structural applications [J]. Mate. Today: Proc., 2021, 46: 10687
8 Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater. Sci. Eng. R, 2005, 50(1-2): 1
doi: 10.1016/j.mser.2005.07.001
9 Gupta S, Haridas R S, Agrawal P, et al. Influence of welding parameters on mechanical, microstructure, and corrosion behavior of friction stir welded Al 7017 alloy [J]. Mater. Sci. Eng. A, 2022, 846: 143303
doi: 10.1016/j.msea.2022.143303
10 Zhang H, Qin H L, Wu H Q. Effect of process parameters on mechanical properties of friction stir welded 2195 Al-Li alloy joints [J]. Trans. China Weld. Inst., 2016, 37(4): 19
张 华, 秦海龙, 吴会强. 工艺参数对2195铝锂合金搅拌摩擦焊接头力学性能的影响 [J]. 焊接学报, 2016, 37(4): 19
11 Liu J, Chen H G, Wei J X, et al. Micro-softening behavior and its control of 7N01-T5 Al alloy friction stir welded joint [J]. Light Alloy Fabrication Technol., 2021, 49(11): 58
刘 建, 陈辉刚, 韦景勋 等. 7N01-T5铝合金搅拌摩擦焊接头微区软化行为及控制 [J]. 轻合金加工技术, 2021, 49(11): 58
12 Zhang Z, Xiao B L, Ma Z Y. Enhancing mechanical properties of friction stir welded 2219Al-T6 joints at high welding speed through water cooling and post-welding artificial ageing [J]. Mater. Charact., 2015, (106): 255
13 Zhang Z, Xiao B L, Ma Z Y. Influence of post weld heat treatment on microstructure and mechanical properties of friction stir-welded 2014Al-T6 alloy. AMR, 2012, (409): 299
14 Kosturek R, Śnieżek L, Wachowski M, et al. The influence of post-weld heat treatment on the microstructure and fatigue properties of Sc-modified AA2519 friction stir-welded joint [J]. Materials, 2019, 12(4): 583
doi: 10.3390/ma12040583
15 Hassan K A A, Norman A F, Price D A, et al. Stability of nugget zone grain structures in high strength Al-alloy friction stir welds during solution treatment [J]. Acta Mater., 2003, 51(7): 1923
doi: 10.1016/S1359-6454(02)00598-0
16 Zhang J H, Hu Z L. Microstructural thermal stability of aluminum alloy friction stir welding joint [J]. Chin. J. Mech., 2022, 58(5): 73
张嘉恒, 胡志力. 铝合金搅拌摩擦焊接头组织热稳定性 [J]. 机械工程学报, 2022, 58(5): 73
17 Zuiko I S, Mironov S, Betsofen S, et al. Suppression of abnormal grain growth in friction-stir welded Al-Cu-Mg alloy by lowering of welding temperature [J]. Scr. Mater., 2021, 196: 113765
doi: 10.1016/j.scriptamat.2021.113765
18 Hu Z L, Dai M L, Pang Q. Influence of welding combined plastic forming on microstructure stability and mechanical properties of friction stir-welded Al-Cu alloy [J]. J. Mater. Eng. Perform., 2018, 27(8): 4036
doi: 10.1007/s11665-018-3495-3
19 Li N J. Characterizations on microstructures and properties of 7075 aluminum alloy after friction stir processing and subsequent heat treatment [D]. Chongqing: Chongqing University, 2017
李念军. 7075铝合金搅拌摩擦加工及热处理后的组织性能表征研究 [D]. 重庆: 重庆大学, 2017
20 Zhang Z, Xiao B L, Ma Z Y. Effect of segregation of secondary phase particles and "S" line on tensile fracture behavior of friction stir-welded 2024Al-T351 joints [J]. Metall. Mater. Trans. A, 2013, 44(9): 4081
doi: 10.1007/s11661-013-1778-8
21 Zeng X H, Xue P, Wang D, et al. Effect of processing parameters on plastic flow and defect formation in friction-stir-welded aluminum alloy [J]. Metall. Mater. Trans. A, 2018, 49(7): 2673
doi: 10.1007/s11661-018-4615-2
22 Ren S R, Ma Z Y, Chen L Q. Effect of initial butt surface on tensile properties and fracture behavior of friction stir welded Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng. A, 2008, 479(1): 293
doi: 10.1016/j.msea.2007.06.047
23 Hu Z L, Pang Q, Dai M L. Microstructure and mechanical properties of friction stir welding joint during post weld heat treatment with different zigzag lines [J]. Rare Met., 2018, 38(11): 1070
doi: 10.1007/s12598-018-1179-7
24 Lin H Q, Wu Y L, Liu S D. Impact of initial temper of base metal on microstructure and mechanical properties of friction stir welded AA 7055 alloy [J]. Mater. Charact., 2018, 146: 159
doi: 10.1016/j.matchar.2018.09.043
25 Kang J, Feng Z C, Frankel G S, et al. Friction stir welding of Al alloy 2219-T8: part I-evolution of precipitates and formation of abnormal Al2Cu agglomerates [J]. Metall. Mater. Trans. A, 2016, 47(9): 4553
doi: 10.1007/s11661-016-3648-7
26 Liu F C, Ma Z Y. Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy [J]. Metall. Mater. Trans. A, 2008, 39(10): 2378
doi: 10.1007/s11661-008-9586-2
27 Chen Z W, Yan K, Ren C C, et al. Precipitation sequence and hardening effect in 7A85 aluminum alloy [J]. J. Alloys Compd., 2021, 875: 159950
doi: 10.1016/j.jallcom.2021.159950
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!