Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (9): 649-654    DOI: 10.11901/1005.3093.2022.504
ARTICLES Current Issue | Archive | Adv Search |
Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125
SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui()
Engineering Research Center of Transportation Materials, Ministry of Education, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
Cite this article: 

SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125. Chinese Journal of Materials Research, 2023, 37(9): 649-654.

Download:  HTML  PDF(10275KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The metal-organic skeleton compound MIL125 was prepared with terephthalic acid and isopropyl titanate as raw materials, afterwards by post impregnating in alkaline metal chloride solution, a series of alkali metal cation-doped M@MIL125-t (M: Li+, Na+, K+; t: 6 h, 9 h, 12 h) were obtained. They were characterized by X-ray diffractometer, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Their specific surface area and CO2 adsorption capacity were assessed by nitrogen isothermal adsorption-desorption curve and CO2 adsorption curve measurements. The results showed that being impregnated with alkali metal chloride solution, the structure and crystal form of MIL125 has not changed significantly. The surface and pores of MIL125 grain was corroded by the impregnation solution, and the specific surface area increased first and then decreased. The optimum impregnation time of MIL125 in the three alkali metal chloride solutions was 9 h. When doped with Na+ by impregnating for 9 h, the maximum specific surface area is up to 2497 m2/g, which is 81.5% higher than that of blank MIL125, and the CO2 adsorption amount is 1.41 mmol/g, which is 72.0% higher than that of blank MIL125.

Key words:  inorganic non-metallic materials      metal organic frameworks      MIL125      alkali metal      CO2 adsorption     
Received:  19 September 2022     
ZTFLH:  TB333  
Fund: National Natural Science Foundation of China(51502021);National Training Programs of Innovation and Entrepreneurship for Undergraduates(X202210710585)
Corresponding Authors:  NIU Yanhui, Tel: 18913730031, E-mail: niuyh@chd.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.504     OR     https://www.cjmr.org/EN/Y2023/V37/I9/649

Fig.1  FT-IR spectra of MIL125 and M@MIL125-t
Fig.2  XRD patterns of MIL125 and M@MIL125-t
Fig.3  TG curves of MIL125 and M@MIL125-t
Fig.4  SEM images of MIL125, Li@MIL125-9 and K@MIL125-9
Fig.5  SEM images of Na@MIL125-t
Fig.6  SEM-EDS mapping of K@MIL125-9
Fig.7  N2 adsorption isotherms of MIL125 and M@MIL125-t at 77 K
Fig.8  BET surface area of MIL125 and M@MIL125-t
Fig.9  CO2 adsorption isotherms of MIL125 and M@MIL125-t (293 K, 101.325 kPa)
Fig.10  Relationship between CO2 uptake and SBET in M@MIL125-t(293 K and 101.325 kPa)
1 Yang X, Xu Q. Bimetallic metal-organic frameworks (MOFs) for gas storage and separation [J]. Cryst. Growth Des., 2017, 17(4): 1450
doi: 10.1021/acs.cgd.7b00166
2 Mohamad M S, Boyd P G, Lev S, et al. Improving the mechanical stability of metal-organic frameworks using chemical caryatids [J]. ACS Central Sci., 2018, 4(7): 832
doi: 10.1021/acscentsci.8b00157 pmid: 30062111
3 Shen K, Zhang L, Chen X, et al. Ordered macro-microporous metal-organic framework single crystals [J]. Science, 2018, 359(6372): 206
doi: 10.1126/science.aao3403 pmid: 29326271
4 Bahamon D, Díaz-Márquez A, Gamallo P, et al. Energetic evaluation of swing adsorption processes for CO2, capture in selected MOFs and zeolites: Effect of impurities [J]. Chem. Eng. J, 2018, 342(15): 458
doi: 10.1016/j.cej.2018.02.094
5 Millward A R, Yaghi O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature [J]. J. Am. Chem. Soc., 2005, 127(51): 17998
pmid: 16366539
6 Zhao Z, Li Z, Lin Y S. Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5) [J]. Ind. Eng. Chem. Res., 2009, 48(22): 10015
doi: 10.1021/ie900665f
7 Yang D A, Cho H Y, Kim J, et al. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method [J]. Energy Environ. Sci., 2012, 5(4): 6465
doi: 10.1039/C1EE02234B
8 Rada Z H, Abid H R, Shang J, et al. Effects of amino functionality on uptake of CO2, CH4, and selectivity of CO2/CH4 on titanium based MOFs [J]. Fuel, 2015, 160(15): 318
doi: 10.1016/j.fuel.2015.07.088
9 Zlotea C, Phanon D, Mazaj M, et al. Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs [J]. Dalton Trans., 2011, 40(18): 4879
doi: 10.1039/c1dt10115c
10 Xiang Z, Hu Z, Yang W, et al. Lithium doping on metal-organic frameworks for enhancing H2 Storage [J]. Int. J. Hydrogen Energy, 2012, 37(1): 946
doi: 10.1016/j.ijhydene.2011.03.102
11 Xue C. CO2 adsorption of metal doped MIL-125(Ti) and properties of supercapacitor electrode materials [D]. Xi'an: Chang'an University, 2019
薛 程. 金属掺杂MIL-125(Ti)的CO2吸附及超级电容器电极材料性能研究 [D]. 西安, 长安大学, 2019
12 Han S S, Goddard W A. Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature [J]. J. Am. Chem. Soc., 2007, 129(27): 8422
doi: 10.1021/ja072599+
13 Yang S, Lin X, Blake A J, et al. Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal-organic framework [J]. Nature Chem., 2009, 1(6): 487
doi: 10.1038/nchem.333
14 Cao Y, Zhao Y, Song F, et al. Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity [J]. J. Energy Chem., 2014, 23(4): 468
doi: 10.1016/S2095-4956(14)60173-X
15 Poloni R, Lee K, Berger R F, et al. Understanding trends in CO2 adsorption in metal-organic frameworks with open-metal sites [J]. J. Phys. Chem. Lett. 2014, 5(5), 861
doi: 10.1021/jz500202x
16 Kim S N, Kim J, Kim H Y, et al. Adsorption/catalytic properties of MIL125 and NH2-MIL125 [J]. Catal. Today, 2013, 204(1): 85
doi: 10.1016/j.cattod.2012.08.014
17 Sohail M, Yun Y N, Lee E, et al. Synthesis of highly crystalline NH2-MIL125 (Ti) with s-shaped water isotherms for adsorption heat transformation [J]. Cryst. Growth Des., 2017, 17(3): 1208
doi: 10.1021/acs.cgd.6b01597
18 Irina D, Ji S L, Nataliya V, et al. Highly selective H2O2-based oxidation of alkylphenols to p-benzoquinones over MIL125 metal-organic frameworks [J]. Eur. J. Inorg. Chem., 2014, 2014(1): 132
doi: 10.1002/ejic.v2014.1
19 Zhang X L, Chen Z J, Yang X Q, et al. The fixation of carbon dioxide with epoxides catalyzed by cation-exchanged metal-organic framework [J]. Micropor. Mesopor. Mater., 2018, 258(1): 55
doi: 10.1016/j.micromeso.2017.08.013
20 Hu S, Liu M, Li K, et al. Surfactant-assisted synthesis of hierarchical NH2-MIL125 for the removal of organic dyes [J]. RSC Adv., 2017, 7(1): 581
doi: 10.1039/C6RA25745C
21 Zhang X, Sun L X, Song J, et al. Based on a V-shaped In(III) metal-organic framework (MOF): design, synthesis and characterization of diverse physical and chemical properties [J]. Polyhedron, 2017, 134(25): 207
doi: 10.1016/j.poly.2017.05.061
[1] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[2] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[3] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[4] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[5] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[6] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[7] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[8] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[9] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[10] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[11] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[12] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[13] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[14] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
[15] WANG Yihao, WU Qiong, LI Pengfei, YANG Zhanxin, ZHANG Hongtao. Preparation and Supercapacitor Performance of Few-Layered Ti3C2 with High Specific Capacitance[J]. 材料研究学报, 2022, 36(3): 183-190.
No Suggested Reading articles found!