Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (7): 554-560    DOI: 10.11901/1005.3093.2022.445
ARTICLES Current Issue | Archive | Adv Search |
Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells
LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling()
School of Physical Sciences and Technology, Hebei University, Baoding 071002, China
Cite this article: 

LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells. Chinese Journal of Materials Research, 2023, 37(7): 554-560.

Download:  HTML  PDF(6137KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To search superior photoanode materials for further enhancing the cell performance of quantum dot-sensitized solar cells (QDSSCs), the zero-dimensional SnO2 may be a good option for its excellent cycling stability, high mobility and bandgap tunability. For this purpose, hollow nanospheres of SnO2, as the candidate material for scattering layer of the photoanode were synthesized by a simple one-step hydrothermal method, and then screen-printed on the TiO2 substrate to produce a photoanode for quantum dot sensitized solar cells (QDSSCs), which showed excellent electrochemical performance. It is demonstrated that the hollow sphere structure of SnO2 facilitates the storage of electrolytes and improves its chemical stability while ensuring an efficient electron transfer rate, allowing the cyclic reaction to proceed more efficiently. ZnCuInSe quantum dots were used as sensitizers for the preparation of QDSSCs. Thus it is meaningfull to investigate the effect of photoanodes with different thickness of TiO2 films printed with quantum dots on the photovoltaic performance of solar cells. Several sets of test results show that when the thickness of the SnO2 scattering layer is 9 μm, the photoelectric conversion efficiency reaches a maximum value of 7.31%. This opens up the possibility of using SnO2 in QDSSCs.

Key words:  inorganic non-metallic materials      quantum dot-sensitized solar cells      screen printing techniques      SnO2 scattering layer      film thickness of the photoanode      electrochemical characteristics     
Received:  18 August 2022     
ZTFLH:  TQ152  
Fund: National Natural Science Foundation of China(51772073);Key Project of the Natural Science Foundation of Hebei Province(E2020201030);Beijing-Tianjin-Hebei Collaborative Innovation Community Construction Project(21344301D);Hebei University 2022 College Student Innovation and Entrepreneurship Program Training Funding Project(2022169);Hebei University 2022 College Student Innovation and Entrepreneurship Program Training Funding Project(2022165);Hebei University 2022 College Student Innovation and Entrepreneurship Program Training Funding Project(2022170)
Corresponding Authors:  LI Ling, Tel: 18733255796, E-mail: lilinghbu@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.445     OR     https://www.cjmr.org/EN/Y2023/V37/I7/554

Fig.1  Flow chart of preparation for SnO2 nanosphere
Fig.2  SEM images of SnO2 (a), TEM image of SnO2 (b,d) and schematic model of SnO2 (c)
Fig.3  XRD patterns of SnO2 material
Fig.4  UV-Vis curves of TiO2 film without scattering layer and TiO2-SnO2 scattering layer
SampleVoc / VJsc / mA·cm-2FFPCE / %
15 μm TiO20.548±0.1521.48±0.130.536.18
15 μm TiO2-6 μm SnO20.509±0.0721.83±0.020.566.23
15 μm TiO2-9 μm SnO20.522±0.1023.26±0.070.607.34
15 μm TiO2-12 μm SnO20.511±0.1222.78±0.140.596.87
15 μm TiO2-9 μm SnO2-Solid0.595±0.0820.94±0.110.566.98
Table 1  Photovoltaic performance parameters of light anode scattering layers with different film thicknesses
Fig.5  J-V curves based on photoanodic scattering layers with different film thicknesses (a), IPCE spectra and Jsc curves (b) and Nyquist curves (c)
SampleRs / Ω·cm2Rrec / Ω·cm2Cμ / mF·cm-2τn / ms
15 μm TiO24.661531.70.10857.42
15 μm TiO2-6 μm SnO24.341813.10.127103.26

15 μm TiO2-9 μm SnO2

15 μm TiO2-12 μm SnO2

3.091

3.936

1030

914.3

0.168

0.141

173.04

128.92

Table 2  EIS performance parameter table of photoanode scattering layer with different film thicknesses
1 Zaban A, MićićO I, Gregg B A, et al. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots [J]. Langmuir, 1998, 14: 3153
doi: 10.1021/la9713863
2 Zhou B, Li Y Y, Zou Y Q, et al. Platinum modulates redox properties and 5-hydroxymethylfurfural adsorption kinetics of Ni(OH)2 for biomass upgrading [J]. Angew. Chem. Int. Ed., 2021, 60: 22908
doi: 10.1002/anie.v60.42
3 Ramya M, Nideep T K, Nampoori V P N, et al. The impact of ZnO nanoparticle size on the performance of photoanodes in DSSC and QDSSC: a comparative study [J]. J. Mater. Sci: Mater. Electron., 2021, 32: 3167
doi: 10.1007/s10854-020-05065-0
4 Peng Y C, Fu G S. Approach to quantum dot solar cells [J]. Chin. J. Mater. Res., 2009, 23: 449
彭英才, 傅广生. 量子点太阳电池的探索 [J]. 材料研究学报, 2009, 23: 449
5 Xiong T H, Cai W H, Miao Y, et al. Simultaneous epitaxy growth and photoelectrochemical performance of ZnO nanorod arrays and films [J]. Chin. J. Mater. Res., 2022, 36: 481
doi: 10.11901/1005.3093.2021.149
熊庭辉, 蔡文汉, 苗 雨 等. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能 [J]. 材料研究学报, 2022, 36: 481
doi: 10.11901/1005.3093.2021.149
6 Song B, Cheng K, Wu C, et al. Synthesis and their optical characterizations of CdS quantum dots [J]. Chin. J. Mater. Res., 2009, 23: 89
宋 冰, 程 珂, 武 超 等. CdS量子点的制备和光学性质 [J]. 材料研究学报, 2009, 23: 89
7 Chen G Z, Chen P, Xu D W, et al. Preparation and microwave absorbtion performance of composite hollow carbon/Fe3O4 magnetic quantum dots [J]. Chin. J. Mater. Res., 2022, 36: 29
陈冠震, 陈 平, 徐东卫 等. 中空碳/Fe3O4磁性量子点复合材料的制备及其吸波性能 [J]. 材料研究学报, 2022, 36: 29
doi: 10.11901/1005.3093.2021.334
8 Archana T, Sreelekshmi S, Subashini G, et al. The effect of graphene quantum dots/ZnS co-passivation on enhancing the photovoltaic performance of CdS quantum dot sensitized solar cells [J]. Int. J. Energy Res., 2021, 45: 15879
doi: 10.1002/er.v45.11
9 Du Z L, Pan Z X, Fabregat-Santiago F, et al. Carbon counter-electrode-based quantum-dot-sensitized solar cells with certified efficiency exceeding 11% [J]. J. Phys. Chem. Lett., 2016, 7: 3103
doi: 10.1021/acs.jpclett.6b01356 pmid: 27455143
10 Elibol E. Design of CdSe x S1- x /ZnS quantum dot sensitized solar cell [J]. AIP Conf. Proc., 2022, 2440: 030007
11 Zhang J J, Wang L X, Jiang C H, et al. CsPbBr3 nanocrystal induced bilateral interface modification for efficient planar perovskite solar cells [J]. Adv. Sci., 2021, 8: 2102648
doi: 10.1002/advs.v8.21
12 Ou J H, Hu B N, Wang W, et al. Transparent MSe2@N-doped carbon film as a cathode for Co(Ⅲ/Ⅱ)-mediated bifacial dye-sensitized solar cells [J]. Chin. J. Mater. Res., 2020, 34: 683
欧金花, 胡波年, 王 薇 等. 透明MSe2@氮掺杂碳膜对电极用于钴电解质双面DSSC [J]. 材料研究学报, 2020, 34: 683
doi: 10.11901/1005.3093.2020.044
13 Chang J F, Xiao Y, Luo Z Y, et al. Recent progress of non-noble metal catalysts in water electrolysis for hydrogen production [J]. Acta Phys.-Chim. Sin., 2016, 32: 1556
doi: 10.3866/PKU.WHXB201604291
常进法, 肖 瑶, 罗兆艳 等. 水电解制氢非贵金属催化剂的研究进展 [J]. 物理化学学报, 2016, 32: 1556
14 Wang W, Feng W L, Du J, et al. Cosensitized quantum dot solar cells with conversion efficiency over 12% [J]. Adv. Mater., 2018, 30: 1705746
doi: 10.1002/adma.201705746
15 Carey G H, Abdelhady A L, Ning Z J, et al. Colloidal quantum dot solar cells [J]. Chem. Rev., 2015, 115: 12732
doi: 10.1021/acs.chemrev.5b00063 pmid: 26106908
16 Tian J J, Cao G Z. Design, fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells [J]. Coord. Chem. Rev., 2016, 320-321: 193
doi: 10.1016/j.ccr.2016.02.016
17 Wu C P, Xie K X, He J P, et al. SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance [J]. Rare Met., 2021, 40: 48
doi: 10.1007/s12598-020-01623-x
18 Wei Z P, Liu M N, Li H G, et al. SnO2 quantum dots decorated reduced graphene oxide nanosheets composites for electrochemical supercapacitor applications [J]. Int. J. Electrochem. Sci., 2020, 15: 6257
doi: 10.20964/2020.07.18
19 Xu Z M, Guan P Y, Younis A, et al. Manipulating resistive states in oxide based resistive memories through defective layers design [J]. RSC Adv., 2017, 7: 56390
doi: 10.1039/C7RA11681K
20 Yan X B, Pei Y F, Chen H W, et al. Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors [J]. Adv. Mater., 2019, 31: 1805284
doi: 10.1002/adma.201805284
21 Ren Z W, Wang J, Pan Z X, et al. Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9% [J]. Chem. Mater., 2015, 27: 8398
doi: 10.1021/acs.chemmater.5b03864
22 Hossain A, Koh Z Y, Wang Q. PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced infrared light harnessing [J]. Phys. Chem. Chem. Phys., 2012, 14: 7367
doi: 10.1039/c2cp40551b pmid: 22531753
23 Lin Y B, Lin Y, Meng Y M, et al. CdS/CdSe co-sensitized SnO2 photoelectrodes for quantum dots sensitized solar cells [J]. Opt. Commun., 2015, 346: 64
doi: 10.1016/j.optcom.2015.02.031
24 Liu D, Li Y, Zhang X L, et al. Heterostructured perylene diimide (PDI) supramolecular nanorods with SnO2 quantum dots for enhanced visible-light photocatalytic activity and stability [J]. Chem. Cat. Chem., 2022, 14: e202200087
25 Gao S, Yi X H, Shang J, et al. Organic and hybrid resistive switching materials and devices [J]. Chem. Soc. Rev., 2019, 48: 1531
doi: 10.1039/c8cs00614h pmid: 30398508
26 Kim E K, Bui H T, Shrestha N K, et al. An enhanced electrochemical energy conversion behavior of thermally treated thin film of 1-dimensional CoTe synthesized from aqueous solution at room temperature [J]. Electrochim. Acta, 2018, 260: 365
doi: 10.1016/j.electacta.2017.12.072
27 Pan Z X, Zhao K, Wang J, et al. Near infrared absorption of CdSe x Te1- x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability [J]. ACS Nano, 2013, 7: 5215
doi: 10.1021/nn400947e
28 Hossain A, Yang G W, Parameswaran M, et al. Mesoporous SnO2 spheres synthesized by electrochemical anodization and their application in CdSe-sensitized solar cells [J]. J. Phys. Chem. C, 2010, 114: 21878
doi: 10.1021/jp109083k
29 Hossain A, Jennings J R, Koh Z Y, et al. Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells Exhibiting unprecedented photocurrent densities [J]. ACS Nano, 2011, 5: 3172
doi: 10.1021/nn200315b pmid: 21384799
30 Latif H, Ashraf S, Rafique M S, et al. A novel, PbS quantum dot-Sensitized solar cell structure with TiO2-fMWCNTS nano-composite filled meso-porous anatase TiO2 photoanode [J]. Sol. Energy, 2020, 204: 617
doi: 10.1016/j.solener.2020.03.114
31 Wang H, Li B, Gao J, et al. SnO2 hollow nanospheres enclosed by single crystalline nanoparticles for highly efficient dye-sensitized solar cells [J]. Cryst. Eng. Comm., 2012, 14: 5177
doi: 10.1039/c2ce06531b
32 Du J, Du Z L, Hu J S, et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6% [J]. J. Am. Chem. Soc., 2016, 138: 4201
doi: 10.1021/jacs.6b00615 pmid: 26962680
33 Wang W R, Jiang G C, Yu J, et al. High efficiency quantum dot sensitized solar cells based on direct adsorption of quantum dots on photoanodes [J]. ACS Appl. Mater. Interfaces, 2017, 9: 22549
doi: 10.1021/acsami.7b05598
34 Peng W X, Du J, Pan Z X, et al. Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells [J]. ACS Appl. Mater. Interfaces, 2017, 9: 5328
doi: 10.1021/acsami.6b14649
35 Liu Z Q, Cheng D F, Zhu Y L, et al. Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells [J]. Chem. Eng. J., 2022, 450: 137787
doi: 10.1016/j.cej.2022.137787
36 Tachibana Y, Hara K, Sayama K, et al. Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells [J]. Chem. Mater., 2002, 14: 2527
doi: 10.1021/cm011563s
37 Sacco A. Electrochemical impedance spectroscopy: fundamentals and application in dye-sensitized solar cells [J]. Renewable Sustainable Energy Rev., 2017, 79: 814
doi: 10.1016/j.rser.2017.05.159
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[5] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[6] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[7] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[8] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[9] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[10] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[11] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[12] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[13] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[14] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
[15] WANG Yihao, WU Qiong, LI Pengfei, YANG Zhanxin, ZHANG Hongtao. Preparation and Supercapacitor Performance of Few-Layered Ti3C2 with High Specific Capacitance[J]. 材料研究学报, 2022, 36(3): 183-190.
No Suggested Reading articles found!