|
|
Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells |
LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling( ) |
School of Physical Sciences and Technology, Hebei University, Baoding 071002, China |
|
Cite this article:
LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells. Chinese Journal of Materials Research, 2023, 37(7): 554-560.
|
Abstract To search superior photoanode materials for further enhancing the cell performance of quantum dot-sensitized solar cells (QDSSCs), the zero-dimensional SnO2 may be a good option for its excellent cycling stability, high mobility and bandgap tunability. For this purpose, hollow nanospheres of SnO2, as the candidate material for scattering layer of the photoanode were synthesized by a simple one-step hydrothermal method, and then screen-printed on the TiO2 substrate to produce a photoanode for quantum dot sensitized solar cells (QDSSCs), which showed excellent electrochemical performance. It is demonstrated that the hollow sphere structure of SnO2 facilitates the storage of electrolytes and improves its chemical stability while ensuring an efficient electron transfer rate, allowing the cyclic reaction to proceed more efficiently. ZnCuInSe quantum dots were used as sensitizers for the preparation of QDSSCs. Thus it is meaningfull to investigate the effect of photoanodes with different thickness of TiO2 films printed with quantum dots on the photovoltaic performance of solar cells. Several sets of test results show that when the thickness of the SnO2 scattering layer is 9 μm, the photoelectric conversion efficiency reaches a maximum value of 7.31%. This opens up the possibility of using SnO2 in QDSSCs.
|
Received: 18 August 2022
|
|
Fund: National Natural Science Foundation of China(51772073);Key Project of the Natural Science Foundation of Hebei Province(E2020201030);Beijing-Tianjin-Hebei Collaborative Innovation Community Construction Project(21344301D);Hebei University 2022 College Student Innovation and Entrepreneurship Program Training Funding Project(2022169);Hebei University 2022 College Student Innovation and Entrepreneurship Program Training Funding Project(2022165);Hebei University 2022 College Student Innovation and Entrepreneurship Program Training Funding Project(2022170) |
Corresponding Authors:
LI Ling, Tel: 18733255796, E-mail: lilinghbu@163.com
|
1 |
Zaban A, MićićO I, Gregg B A, et al. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots [J]. Langmuir, 1998, 14: 3153
doi: 10.1021/la9713863
|
2 |
Zhou B, Li Y Y, Zou Y Q, et al. Platinum modulates redox properties and 5-hydroxymethylfurfural adsorption kinetics of Ni(OH)2 for biomass upgrading [J]. Angew. Chem. Int. Ed., 2021, 60: 22908
doi: 10.1002/anie.v60.42
|
3 |
Ramya M, Nideep T K, Nampoori V P N, et al. The impact of ZnO nanoparticle size on the performance of photoanodes in DSSC and QDSSC: a comparative study [J]. J. Mater. Sci: Mater. Electron., 2021, 32: 3167
doi: 10.1007/s10854-020-05065-0
|
4 |
Peng Y C, Fu G S. Approach to quantum dot solar cells [J]. Chin. J. Mater. Res., 2009, 23: 449
|
|
彭英才, 傅广生. 量子点太阳电池的探索 [J]. 材料研究学报, 2009, 23: 449
|
5 |
Xiong T H, Cai W H, Miao Y, et al. Simultaneous epitaxy growth and photoelectrochemical performance of ZnO nanorod arrays and films [J]. Chin. J. Mater. Res., 2022, 36: 481
doi: 10.11901/1005.3093.2021.149
|
|
熊庭辉, 蔡文汉, 苗 雨 等. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能 [J]. 材料研究学报, 2022, 36: 481
doi: 10.11901/1005.3093.2021.149
|
6 |
Song B, Cheng K, Wu C, et al. Synthesis and their optical characterizations of CdS quantum dots [J]. Chin. J. Mater. Res., 2009, 23: 89
|
|
宋 冰, 程 珂, 武 超 等. CdS量子点的制备和光学性质 [J]. 材料研究学报, 2009, 23: 89
|
7 |
Chen G Z, Chen P, Xu D W, et al. Preparation and microwave absorbtion performance of composite hollow carbon/Fe3O4 magnetic quantum dots [J]. Chin. J. Mater. Res., 2022, 36: 29
|
|
陈冠震, 陈 平, 徐东卫 等. 中空碳/Fe3O4磁性量子点复合材料的制备及其吸波性能 [J]. 材料研究学报, 2022, 36: 29
doi: 10.11901/1005.3093.2021.334
|
8 |
Archana T, Sreelekshmi S, Subashini G, et al. The effect of graphene quantum dots/ZnS co-passivation on enhancing the photovoltaic performance of CdS quantum dot sensitized solar cells [J]. Int. J. Energy Res., 2021, 45: 15879
doi: 10.1002/er.v45.11
|
9 |
Du Z L, Pan Z X, Fabregat-Santiago F, et al. Carbon counter-electrode-based quantum-dot-sensitized solar cells with certified efficiency exceeding 11% [J]. J. Phys. Chem. Lett., 2016, 7: 3103
doi: 10.1021/acs.jpclett.6b01356
pmid: 27455143
|
10 |
Elibol E. Design of CdSe x S1- x /ZnS quantum dot sensitized solar cell [J]. AIP Conf. Proc., 2022, 2440: 030007
|
11 |
Zhang J J, Wang L X, Jiang C H, et al. CsPbBr3 nanocrystal induced bilateral interface modification for efficient planar perovskite solar cells [J]. Adv. Sci., 2021, 8: 2102648
doi: 10.1002/advs.v8.21
|
12 |
Ou J H, Hu B N, Wang W, et al. Transparent MSe2@N-doped carbon film as a cathode for Co(Ⅲ/Ⅱ)-mediated bifacial dye-sensitized solar cells [J]. Chin. J. Mater. Res., 2020, 34: 683
|
|
欧金花, 胡波年, 王 薇 等. 透明MSe2@氮掺杂碳膜对电极用于钴电解质双面DSSC [J]. 材料研究学报, 2020, 34: 683
doi: 10.11901/1005.3093.2020.044
|
13 |
Chang J F, Xiao Y, Luo Z Y, et al. Recent progress of non-noble metal catalysts in water electrolysis for hydrogen production [J]. Acta Phys.-Chim. Sin., 2016, 32: 1556
doi: 10.3866/PKU.WHXB201604291
|
|
常进法, 肖 瑶, 罗兆艳 等. 水电解制氢非贵金属催化剂的研究进展 [J]. 物理化学学报, 2016, 32: 1556
|
14 |
Wang W, Feng W L, Du J, et al. Cosensitized quantum dot solar cells with conversion efficiency over 12% [J]. Adv. Mater., 2018, 30: 1705746
doi: 10.1002/adma.201705746
|
15 |
Carey G H, Abdelhady A L, Ning Z J, et al. Colloidal quantum dot solar cells [J]. Chem. Rev., 2015, 115: 12732
doi: 10.1021/acs.chemrev.5b00063
pmid: 26106908
|
16 |
Tian J J, Cao G Z. Design, fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells [J]. Coord. Chem. Rev., 2016, 320-321: 193
doi: 10.1016/j.ccr.2016.02.016
|
17 |
Wu C P, Xie K X, He J P, et al. SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance [J]. Rare Met., 2021, 40: 48
doi: 10.1007/s12598-020-01623-x
|
18 |
Wei Z P, Liu M N, Li H G, et al. SnO2 quantum dots decorated reduced graphene oxide nanosheets composites for electrochemical supercapacitor applications [J]. Int. J. Electrochem. Sci., 2020, 15: 6257
doi: 10.20964/2020.07.18
|
19 |
Xu Z M, Guan P Y, Younis A, et al. Manipulating resistive states in oxide based resistive memories through defective layers design [J]. RSC Adv., 2017, 7: 56390
doi: 10.1039/C7RA11681K
|
20 |
Yan X B, Pei Y F, Chen H W, et al. Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors [J]. Adv. Mater., 2019, 31: 1805284
doi: 10.1002/adma.201805284
|
21 |
Ren Z W, Wang J, Pan Z X, et al. Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9% [J]. Chem. Mater., 2015, 27: 8398
doi: 10.1021/acs.chemmater.5b03864
|
22 |
Hossain A, Koh Z Y, Wang Q. PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced infrared light harnessing [J]. Phys. Chem. Chem. Phys., 2012, 14: 7367
doi: 10.1039/c2cp40551b
pmid: 22531753
|
23 |
Lin Y B, Lin Y, Meng Y M, et al. CdS/CdSe co-sensitized SnO2 photoelectrodes for quantum dots sensitized solar cells [J]. Opt. Commun., 2015, 346: 64
doi: 10.1016/j.optcom.2015.02.031
|
24 |
Liu D, Li Y, Zhang X L, et al. Heterostructured perylene diimide (PDI) supramolecular nanorods with SnO2 quantum dots for enhanced visible-light photocatalytic activity and stability [J]. Chem. Cat. Chem., 2022, 14: e202200087
|
25 |
Gao S, Yi X H, Shang J, et al. Organic and hybrid resistive switching materials and devices [J]. Chem. Soc. Rev., 2019, 48: 1531
doi: 10.1039/c8cs00614h
pmid: 30398508
|
26 |
Kim E K, Bui H T, Shrestha N K, et al. An enhanced electrochemical energy conversion behavior of thermally treated thin film of 1-dimensional CoTe synthesized from aqueous solution at room temperature [J]. Electrochim. Acta, 2018, 260: 365
doi: 10.1016/j.electacta.2017.12.072
|
27 |
Pan Z X, Zhao K, Wang J, et al. Near infrared absorption of CdSe x Te1- x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability [J]. ACS Nano, 2013, 7: 5215
doi: 10.1021/nn400947e
|
28 |
Hossain A, Yang G W, Parameswaran M, et al. Mesoporous SnO2 spheres synthesized by electrochemical anodization and their application in CdSe-sensitized solar cells [J]. J. Phys. Chem. C, 2010, 114: 21878
doi: 10.1021/jp109083k
|
29 |
Hossain A, Jennings J R, Koh Z Y, et al. Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells Exhibiting unprecedented photocurrent densities [J]. ACS Nano, 2011, 5: 3172
doi: 10.1021/nn200315b
pmid: 21384799
|
30 |
Latif H, Ashraf S, Rafique M S, et al. A novel, PbS quantum dot-Sensitized solar cell structure with TiO2-fMWCNTS nano-composite filled meso-porous anatase TiO2 photoanode [J]. Sol. Energy, 2020, 204: 617
doi: 10.1016/j.solener.2020.03.114
|
31 |
Wang H, Li B, Gao J, et al. SnO2 hollow nanospheres enclosed by single crystalline nanoparticles for highly efficient dye-sensitized solar cells [J]. Cryst. Eng. Comm., 2012, 14: 5177
doi: 10.1039/c2ce06531b
|
32 |
Du J, Du Z L, Hu J S, et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6% [J]. J. Am. Chem. Soc., 2016, 138: 4201
doi: 10.1021/jacs.6b00615
pmid: 26962680
|
33 |
Wang W R, Jiang G C, Yu J, et al. High efficiency quantum dot sensitized solar cells based on direct adsorption of quantum dots on photoanodes [J]. ACS Appl. Mater. Interfaces, 2017, 9: 22549
doi: 10.1021/acsami.7b05598
|
34 |
Peng W X, Du J, Pan Z X, et al. Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells [J]. ACS Appl. Mater. Interfaces, 2017, 9: 5328
doi: 10.1021/acsami.6b14649
|
35 |
Liu Z Q, Cheng D F, Zhu Y L, et al. Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells [J]. Chem. Eng. J., 2022, 450: 137787
doi: 10.1016/j.cej.2022.137787
|
36 |
Tachibana Y, Hara K, Sayama K, et al. Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells [J]. Chem. Mater., 2002, 14: 2527
doi: 10.1021/cm011563s
|
37 |
Sacco A. Electrochemical impedance spectroscopy: fundamentals and application in dye-sensitized solar cells [J]. Renewable Sustainable Energy Rev., 2017, 79: 814
doi: 10.1016/j.rser.2017.05.159
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|