Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (7): 481-488    DOI: 10.11901/1005.3093.2021.149
ARTICLES Current Issue | Archive | Adv Search |
Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films
XIONG Tinghui1,2, CAI Wenhan1,2, MIAO Yu1,2, CHEN Chenlong2()
1.College of Chemistry, Fuzhou University, Fuzhou 350108, China
2.Key Laboratory of Optoelectronic Materials Chemistry and Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, China
Cite this article: 

XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films. Chinese Journal of Materials Research, 2022, 36(7): 481-488.

Download:  HTML  PDF(8062KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The simultaneous epitaxial growth of vertical nanorod arrays and thin films of zinc oxide (ZnO) was realized on a gold-plated plane sapphire substrate via a simple chemical vapor deposition method. In this nanostructure, the vertical single crystal nanorods are hexagonal prism or cylindrical in shape, and are all grown on a ZnO thin film, so that the vertical nanorods are connected to each other through the beneath thin oxide ZnO film. In comparison with ZnO nanofilms, the prepared nanostructure has excellent photoelectrochemistry (PEC) performance with an incident photocurrent efficiency of 2.4 times that of the simple ZnO nanofilms; while its light energy conversion efficiency is 5 times that of ZnO nanofilms. Its excellent PEC performance can be attributed to its high surface area-to-volume ratio and the carrier transport channel provided by the supporter ZnO film. The mechanism for cooperative growth of ZnO nanorod arrays and thin films was proposed as follows: during the processing, Au liquefies and absorbs Zn atoms in the atmosphere forming alloys. After the alloy droplets were supersaturated ZnO begins to nucleate, and then ZnO film formed on the surface of the substrate. At the same time, Zn autocatalyzed (vapor-solid)VS growth and Au catalyzed (vapor-liquid-solid)VLS growth occurred, respectively forming hexagonal prism nanorods and cylindrical nanorods, and finally a vertical nanorod array was connected through the underneath thin ZnO film.

Key words:  inorganic non-metallic materials      ZnO nanorod arrays      simultaneous epitaxy      PEC     
Received:  24 February 2021     
ZTFLH:  O646  
Fund: Natural Science Foundation of Fujian Province(2018J01110)
About author:  CHEN Chenlong, Tel: 15392001522, E-mail: clchen@fjirsm.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.149     OR     https://www.cjmr.org/EN/Y2022/V36/I7/481

Fig.1  Schematic diagram of tube furnace
Fig.2  Top-view SEM image (a) and cross-sectional image (b) of simultaneously epitaxial growth of ZnO nanostructure (ZnO films and nanorod arrays)
Fig.3  XRD pattern of simultaneously epitaxial growth of ZnO nanostructure
Fig.4  30° squint images of ZnO nanostructures, growth times of which is 0 min (a), 2 min (b), 4 min (c), and 8 min (d)
Fig.5  Schematic illustration of the growing mechanism for ZnO nanostructures
Fig.6  XPS spectrum (a) and the spectrum of Au 4f-Zn 3p (b) of ZnO nanostructures with growth times of 2 min and 8 min
Fig.7  UV-visible absorption spectra of ZnO nanofilms and ZnO nanostructures (a) and IPCE spectroscopy of ZnO nanofilms and ZnO nanostructures photoelectrodes (b)
Fig.8  Linear sweep voltammetry (LSV) curves (a), photocurrent-time (J-t) curves (b), light energy conversion efficiency (η) curves(c) and Nyquist plots (d) of the nanofilm and ZnO nanostructured photoelectrodes, the solid lines represent the fitted curves of the measured data to the equivalent circuit model
PhotoanodesPreparationSaturate photocurrent densityRef. (year)
ZnO nanorodsHydrothermal0.42 mA/cm2 at 1.2 V vs. Ag/AgCl[26] (2016)
ZnO nanorod arraysHydrothermal0.3 mA/cm2 at 1.23 V vs. RHE[27] (2018)
ZnO nanowiresMOCVD0.47 mA/cm2 at 1.5 V vs. Ag/AgCl[28] (2018)
ZnO nanowiresHydrothermal0.24 mA/cm2 at 1.23 V vs. RHE[29] (2019)
ZnO nanorod arraysHydrothermal0.42 mA/cm2 at 1.23 V vs. RHE[30] (2020)
Table 1  ZnO photocurrent density of other similar structures
1 Wang L M, Yang Z H, Chen X, et al. Formation of porous ZnO microspheres and its application as anode material with superior cycle stability in zinc-nickel secondary batteries [J]. J. Power Sources, 2018, 396: 615
doi: 10.1016/j.jpowsour.2018.06.031
2 Tang Y, Zhao Y, Zhang Z G, et al. Hydrothermal synthesis and properties of ZnO nanorod arrays [J]. Chin. J. Mater. Res., 2015, 29: 529
汤 洋, 赵 颖, 张增光 等. 氧化锌纳米柱阵列的水热合成及其性能 [J]. 材料研究学报, 2015, 29: 529
3 Wang B S, Li R Y, Zhang Z Y, et al. An overlapping ZnO nanowire photoanode for photoelectrochemical water splitting [J]. Catal. Today, 2019, 321-322: 100
doi: 10.1016/j.cattod.2018.02.028
4 Fang X M, Zeng Z, Gao S Y, et al. Low-temperature preparation and photocatalytic activity of eco-friendly nanocone forest-like arrays of ZnO [J]. Chin. J. Mater. Res., 2018, 32: 945
方向明, 曾 值, 高世勇 等. ZnO纳米锥丛林阵列的低温制备和光催化性能 [J]. 材料研究学报, 2018, 32: 945
5 Yang T T, Xue J W, Tan H, et al. Highly ordered ZnO/ZnFe2O4 inverse opals with binder-free heterojunction interfaces for high-performance photoelectrochemical water splitting [J]. J. Mater. Chem., 2018, 6A: 1210
6 Sreedhar A, Reddy I N, Hoai Ta Q T, et al. Insight into anions and cations effect on charge carrier generation and transportation of flake-like co-doped ZnO thin films for stable PEC water splitting activity [J]. J. Electroanal. Chem., 2019, 855: 113583
doi: 10.1016/j.jelechem.2019.113583
7 Zhu Y P, Chen G, Xu X M, et al. Enhancing electrocatalytic activity for hydrogen evolution by strongly coupled molybdenum nitride@nitrogen-doped carbon porous nano-octahedrons [J]. ACS Catal., 2017, 7: 3540
doi: 10.1021/acscatal.7b00120
8 Lv R, Wang T, Su F L, et al. Facile synthesis of ZnO nanopencil arrays for photoelectrochemical water splitting [J]. Nano Energy, 2014, 7: 143
doi: 10.1016/j.nanoen.2014.04.020
9 Kennedy O W, Coke M L, White E R, et al. MBE growth and morphology control of ZnO nanobelts with polar axis perpendicular to growth direction [J]. Mater. Lett., 2018, 212: 51
doi: 10.1016/j.matlet.2017.10.017
10 Yang J S, Wu J J. Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting [J]. Nano Energy, 2017, 32: 232
doi: 10.1016/j.nanoen.2016.12.039
11 Kong Y, Ma B J, Liu F, et al. Cellular stemness maintenance of human adipose-derived stem cells on ZnO nanorod arrays [J]. Small, 2019, 15: 1904099
doi: 10.1002/smll.201904099
12 Chen Y L, Wang L J, Wang W Z, et al. Synthesis of Se-doped ZnO nanoplates with enhanced photoelectrochemical and photocatalytic properties [J]. Mater. Chem. Phys., 2017, 199: 416
doi: 10.1016/j.matchemphys.2017.07.036
13 Jia C C, Lin Z Y, Huang Y, et al. Nanowire electronics: from nanoscale to macroscale [J]. Chem. Rev., 2019, 119: 9074
doi: 10.1021/acs.chemrev.9b00164
14 Dong B, Yu X X, Dong Z F, et al. Facile synthesis of ZnO nanoparticles for the photocatalytic degradation of methylene blue [J]. J. Sol-Gel Sci. Technol., 2017, 82: 167
doi: 10.1007/s10971-016-4297-4
15 Zou X, Liu Y P, Li G D, et al. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis [J]. Adv. Mater., 2017, 29: 1700404
doi: 10.1002/adma.201700404
16 Maya-Treviño M L, Guzmán-Mar J L, Hinojosa-Reyes L, et al. Synthesis and photocatalytic activity of ZnO-CuPc for methylene blue and potassium cyanide degradation [J]. Mater. Sci. Semicond. Process., 2018, 77: 74
doi: 10.1016/j.mssp.2017.12.005
17 Wang R, Kong X Y, Zhang W T, et al. Mechanism insight into rapid photocatalytic disinfection of salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures [J]. Appl. Catal., 2018, 225B: 228
18 Lee W J, Lee G H. Morphological variation and luminescence properties of ZnO micro/nanocrystals synthesized by thermal evaporation method [J]. Korean J. Mater. Res., 2017, 27: 530
doi: 10.3740/MRSK.2017.27.10.530
19 Xiao Y C, Tian Y Y, Sun S J, et al. Growth modulation of simultaneous epitaxy of ZnO obliquely aligned nanowire arrays and film on r-plane sapphire substrate [J]. Nano Res., 2017, 11: 3864
doi: 10.1007/s12274-017-1960-1
20 Wang S, Kuang P Y, Cheng B, et al. ZnO hierarchical microsphere for enhanced photocatalytic activity [J]. J. Alloys Compd., 2018, 741: 622
doi: 10.1016/j.jallcom.2018.01.141
21 Wang Y, Sheng M Q, Weng W P, et al. Electrocatalytic hydrogen evolution reaction on electrodeposited amorphous Co-W alloy coatings in alkaline solution [J]. Chin. J. Mater. Res., 2017, 31: 774
王 玉, 盛敏奇, 翁文凭 等. 电沉积非晶态Co-W 合金镀层在碱性溶液中的电催化析氢研究 [J]. 材料研究学报, 2017, 31: 774
22 Guo X M, Qian Y, Zhang W, et al. Amorphous Ni-P with hollow dendritic architecture as bifunctional electrocatalyst for overall water splitting [J]. J. Alloys Compd., 2018, 765: 835
doi: 10.1016/j.jallcom.2018.06.321
23 Yan S. Preparation of modified TiO2 nanotube array light anode and photoelectrochemical performance research [D]. Qingdao: Qingdao University of Science & Technology, 2018
颜 双. 改性TiO2纳米管阵列光阳极的制备及其光电化学性能研究 [D]. 青岛: 青岛科技大学, 2018
24 Wang S, He P, Xie Z W, et al. Tunable nanocotton-like amorphous ternary Ni-Co-B: a highly efficient catalyst for enhanced oxygen evolution reaction [J]. Electr. Acta, 2019, 296: 644
doi: 10.1016/j.electacta.2018.11.099
25 Quintana A, Gómez A, Baró M D, et al. Self-templating faceted and spongy single-crystal ZnO nanorods: Resistive switching and enhanced piezoresponse [J]. Mater. Des., 2017, 133: 54
doi: 10.1016/j.matdes.2017.07.039
26 Yan L, Zhao W, Liu Z F. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting [J]. Dalton Trans., 2016, 45: 11346
doi: 10.1039/C6DT02027E
27 Kim D, Zhang Z, Yong K. Synergistic doping effects of a ZnO: N/BiVO4: Mo bunched nanorod array photoanode for enhancing charge transfer and carrier density in photoelectrochemical systems [J]. Nanoscale, 2018, 10: 20256
doi: 10.1039/C8NR06630B
28 Hassan M A, Johar M A, Yu S Y. Facile synthesis of well-aligned ZnO nanowires on various substrates by MOCVD for enhanced photoelectrochemical water-splitting performance [J]. ACS Sustainable Chem. Eng., 2018, 6: 16047
doi: 10.1021/acssuschemeng.8b02392
29 Ma H P, Yang J H, Tao J J, et al. Low-temperature epitaxial growth of high-quality GaON films on ZnO nanowires for superior photoelectrochemical water splitting [J]. Nano Energy, 2019, 66: 104089
doi: 10.1016/j.nanoen.2019.104089
30 Hou T F, Johar M A, Boppella R, et al. Vertically aligned one-dimensional ZnO/V2 O5 core–shell hetero-nanostructure for photoelectrochemical water splitting [J]. J. Energy Chem., 2020, 49: 262
doi: 10.1016/j.jechem.2020.02.004
31 Zhang Y, Shao Q, Long S, et al. Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting [J]. Nano Energy, 2018, 45: 448
doi: 10.1016/j.nanoen.2018.01.022
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] HU Qing, WU Chunfang, ZHANG Kaifeng, PAN Hao, LI Kun. Preparation of Small Gold Nanorods[J]. 材料研究学报, 2022, 36(7): 519-526.
[15] DUAN Guangyu, HU Jingwen, HU Zuming, YU Xiang, CHI Changlong, LI Yue. Influence of BaTiO3 Nanowire Aspect Ratio on Dielectric Property of Poly (Metaphenylene Isophthalamide) Composite[J]. 材料研究学报, 2022, 36(7): 527-535.
No Suggested Reading articles found!