|
|
Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films |
XIONG Tinghui1,2, CAI Wenhan1,2, MIAO Yu1,2, CHEN Chenlong2( ) |
1.College of Chemistry, Fuzhou University, Fuzhou 350108, China 2.Key Laboratory of Optoelectronic Materials Chemistry and Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, China |
|
Cite this article:
XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films. Chinese Journal of Materials Research, 2022, 36(7): 481-488.
|
Abstract The simultaneous epitaxial growth of vertical nanorod arrays and thin films of zinc oxide (ZnO) was realized on a gold-plated plane sapphire substrate via a simple chemical vapor deposition method. In this nanostructure, the vertical single crystal nanorods are hexagonal prism or cylindrical in shape, and are all grown on a ZnO thin film, so that the vertical nanorods are connected to each other through the beneath thin oxide ZnO film. In comparison with ZnO nanofilms, the prepared nanostructure has excellent photoelectrochemistry (PEC) performance with an incident photocurrent efficiency of 2.4 times that of the simple ZnO nanofilms; while its light energy conversion efficiency is 5 times that of ZnO nanofilms. Its excellent PEC performance can be attributed to its high surface area-to-volume ratio and the carrier transport channel provided by the supporter ZnO film. The mechanism for cooperative growth of ZnO nanorod arrays and thin films was proposed as follows: during the processing, Au liquefies and absorbs Zn atoms in the atmosphere forming alloys. After the alloy droplets were supersaturated ZnO begins to nucleate, and then ZnO film formed on the surface of the substrate. At the same time, Zn autocatalyzed (vapor-solid)VS growth and Au catalyzed (vapor-liquid-solid)VLS growth occurred, respectively forming hexagonal prism nanorods and cylindrical nanorods, and finally a vertical nanorod array was connected through the underneath thin ZnO film.
|
Received: 24 February 2021
|
|
Fund: Natural Science Foundation of Fujian Province(2018J01110) |
About author: CHEN Chenlong, Tel: 15392001522, E-mail: clchen@fjirsm.ac.cn
|
1 |
Wang L M, Yang Z H, Chen X, et al. Formation of porous ZnO microspheres and its application as anode material with superior cycle stability in zinc-nickel secondary batteries [J]. J. Power Sources, 2018, 396: 615
doi: 10.1016/j.jpowsour.2018.06.031
|
2 |
Tang Y, Zhao Y, Zhang Z G, et al. Hydrothermal synthesis and properties of ZnO nanorod arrays [J]. Chin. J. Mater. Res., 2015, 29: 529
|
|
汤 洋, 赵 颖, 张增光 等. 氧化锌纳米柱阵列的水热合成及其性能 [J]. 材料研究学报, 2015, 29: 529
|
3 |
Wang B S, Li R Y, Zhang Z Y, et al. An overlapping ZnO nanowire photoanode for photoelectrochemical water splitting [J]. Catal. Today, 2019, 321-322: 100
doi: 10.1016/j.cattod.2018.02.028
|
4 |
Fang X M, Zeng Z, Gao S Y, et al. Low-temperature preparation and photocatalytic activity of eco-friendly nanocone forest-like arrays of ZnO [J]. Chin. J. Mater. Res., 2018, 32: 945
|
|
方向明, 曾 值, 高世勇 等. ZnO纳米锥丛林阵列的低温制备和光催化性能 [J]. 材料研究学报, 2018, 32: 945
|
5 |
Yang T T, Xue J W, Tan H, et al. Highly ordered ZnO/ZnFe2O4 inverse opals with binder-free heterojunction interfaces for high-performance photoelectrochemical water splitting [J]. J. Mater. Chem., 2018, 6A: 1210
|
6 |
Sreedhar A, Reddy I N, Hoai Ta Q T, et al. Insight into anions and cations effect on charge carrier generation and transportation of flake-like co-doped ZnO thin films for stable PEC water splitting activity [J]. J. Electroanal. Chem., 2019, 855: 113583
doi: 10.1016/j.jelechem.2019.113583
|
7 |
Zhu Y P, Chen G, Xu X M, et al. Enhancing electrocatalytic activity for hydrogen evolution by strongly coupled molybdenum nitride@nitrogen-doped carbon porous nano-octahedrons [J]. ACS Catal., 2017, 7: 3540
doi: 10.1021/acscatal.7b00120
|
8 |
Lv R, Wang T, Su F L, et al. Facile synthesis of ZnO nanopencil arrays for photoelectrochemical water splitting [J]. Nano Energy, 2014, 7: 143
doi: 10.1016/j.nanoen.2014.04.020
|
9 |
Kennedy O W, Coke M L, White E R, et al. MBE growth and morphology control of ZnO nanobelts with polar axis perpendicular to growth direction [J]. Mater. Lett., 2018, 212: 51
doi: 10.1016/j.matlet.2017.10.017
|
10 |
Yang J S, Wu J J. Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting [J]. Nano Energy, 2017, 32: 232
doi: 10.1016/j.nanoen.2016.12.039
|
11 |
Kong Y, Ma B J, Liu F, et al. Cellular stemness maintenance of human adipose-derived stem cells on ZnO nanorod arrays [J]. Small, 2019, 15: 1904099
doi: 10.1002/smll.201904099
|
12 |
Chen Y L, Wang L J, Wang W Z, et al. Synthesis of Se-doped ZnO nanoplates with enhanced photoelectrochemical and photocatalytic properties [J]. Mater. Chem. Phys., 2017, 199: 416
doi: 10.1016/j.matchemphys.2017.07.036
|
13 |
Jia C C, Lin Z Y, Huang Y, et al. Nanowire electronics: from nanoscale to macroscale [J]. Chem. Rev., 2019, 119: 9074
doi: 10.1021/acs.chemrev.9b00164
|
14 |
Dong B, Yu X X, Dong Z F, et al. Facile synthesis of ZnO nanoparticles for the photocatalytic degradation of methylene blue [J]. J. Sol-Gel Sci. Technol., 2017, 82: 167
doi: 10.1007/s10971-016-4297-4
|
15 |
Zou X, Liu Y P, Li G D, et al. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis [J]. Adv. Mater., 2017, 29: 1700404
doi: 10.1002/adma.201700404
|
16 |
Maya-Treviño M L, Guzmán-Mar J L, Hinojosa-Reyes L, et al. Synthesis and photocatalytic activity of ZnO-CuPc for methylene blue and potassium cyanide degradation [J]. Mater. Sci. Semicond. Process., 2018, 77: 74
doi: 10.1016/j.mssp.2017.12.005
|
17 |
Wang R, Kong X Y, Zhang W T, et al. Mechanism insight into rapid photocatalytic disinfection of salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures [J]. Appl. Catal., 2018, 225B: 228
|
18 |
Lee W J, Lee G H. Morphological variation and luminescence properties of ZnO micro/nanocrystals synthesized by thermal evaporation method [J]. Korean J. Mater. Res., 2017, 27: 530
doi: 10.3740/MRSK.2017.27.10.530
|
19 |
Xiao Y C, Tian Y Y, Sun S J, et al. Growth modulation of simultaneous epitaxy of ZnO obliquely aligned nanowire arrays and film on r-plane sapphire substrate [J]. Nano Res., 2017, 11: 3864
doi: 10.1007/s12274-017-1960-1
|
20 |
Wang S, Kuang P Y, Cheng B, et al. ZnO hierarchical microsphere for enhanced photocatalytic activity [J]. J. Alloys Compd., 2018, 741: 622
doi: 10.1016/j.jallcom.2018.01.141
|
21 |
Wang Y, Sheng M Q, Weng W P, et al. Electrocatalytic hydrogen evolution reaction on electrodeposited amorphous Co-W alloy coatings in alkaline solution [J]. Chin. J. Mater. Res., 2017, 31: 774
|
|
王 玉, 盛敏奇, 翁文凭 等. 电沉积非晶态Co-W 合金镀层在碱性溶液中的电催化析氢研究 [J]. 材料研究学报, 2017, 31: 774
|
22 |
Guo X M, Qian Y, Zhang W, et al. Amorphous Ni-P with hollow dendritic architecture as bifunctional electrocatalyst for overall water splitting [J]. J. Alloys Compd., 2018, 765: 835
doi: 10.1016/j.jallcom.2018.06.321
|
23 |
Yan S. Preparation of modified TiO2 nanotube array light anode and photoelectrochemical performance research [D]. Qingdao: Qingdao University of Science & Technology, 2018
|
|
颜 双. 改性TiO2纳米管阵列光阳极的制备及其光电化学性能研究 [D]. 青岛: 青岛科技大学, 2018
|
24 |
Wang S, He P, Xie Z W, et al. Tunable nanocotton-like amorphous ternary Ni-Co-B: a highly efficient catalyst for enhanced oxygen evolution reaction [J]. Electr. Acta, 2019, 296: 644
doi: 10.1016/j.electacta.2018.11.099
|
25 |
Quintana A, Gómez A, Baró M D, et al. Self-templating faceted and spongy single-crystal ZnO nanorods: Resistive switching and enhanced piezoresponse [J]. Mater. Des., 2017, 133: 54
doi: 10.1016/j.matdes.2017.07.039
|
26 |
Yan L, Zhao W, Liu Z F. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting [J]. Dalton Trans., 2016, 45: 11346
doi: 10.1039/C6DT02027E
|
27 |
Kim D, Zhang Z, Yong K. Synergistic doping effects of a ZnO: N/BiVO4: Mo bunched nanorod array photoanode for enhancing charge transfer and carrier density in photoelectrochemical systems [J]. Nanoscale, 2018, 10: 20256
doi: 10.1039/C8NR06630B
|
28 |
Hassan M A, Johar M A, Yu S Y. Facile synthesis of well-aligned ZnO nanowires on various substrates by MOCVD for enhanced photoelectrochemical water-splitting performance [J]. ACS Sustainable Chem. Eng., 2018, 6: 16047
doi: 10.1021/acssuschemeng.8b02392
|
29 |
Ma H P, Yang J H, Tao J J, et al. Low-temperature epitaxial growth of high-quality GaON films on ZnO nanowires for superior photoelectrochemical water splitting [J]. Nano Energy, 2019, 66: 104089
doi: 10.1016/j.nanoen.2019.104089
|
30 |
Hou T F, Johar M A, Boppella R, et al. Vertically aligned one-dimensional ZnO/V2 O5 core–shell hetero-nanostructure for photoelectrochemical water splitting [J]. J. Energy Chem., 2020, 49: 262
doi: 10.1016/j.jechem.2020.02.004
|
31 |
Zhang Y, Shao Q, Long S, et al. Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting [J]. Nano Energy, 2018, 45: 448
doi: 10.1016/j.nanoen.2018.01.022
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|