Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (7): 527-535    DOI: 10.11901/1005.3093.2020.581
ARTICLES Current Issue | Archive | Adv Search |
Influence of BaTiO3 Nanowire Aspect Ratio on Dielectric Property of Poly (Metaphenylene Isophthalamide) Composite
DUAN Guangyu1, HU Jingwen2, HU Zuming2, YU Xiang1, CHI Changlong1, LI Yue1()
1.College of Materials Engineering, Henan University of Engineering, Zhengzhou 450007, China
2.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
Cite this article: 

DUAN Guangyu, HU Jingwen, HU Zuming, YU Xiang, CHI Changlong, LI Yue. Influence of BaTiO3 Nanowire Aspect Ratio on Dielectric Property of Poly (Metaphenylene Isophthalamide) Composite. Chinese Journal of Materials Research, 2022, 36(7): 527-535.

Download:  HTML  PDF(13149KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The BaTiO3 nanowires (BTN) with different aspect ratios were synthesized through hydrothermal method, and polyvinylpyrrolidone (PVP) was used to adjust the surface chemical energy and electrostatic force of BTN (named as P-BTN). Subsequently, P-BTN were added into poly(metaphenylene isophthalamide) (PMIA) matrix to prepare PMIA dielectric composites containing 10% P-BTN (mass fraction) with different aspect ratios. The influence of synthesized temperature on aspect ratio of BTN was investigated, and the effect of P-BTN with different aspect ratios on dielectric and electrical properties of PMIA composites as well as dielectric and electrical properties of P-BTN/PMIA composites at different temperatures were also investigated. The results show that with increase of synthetic temperature of BTN precursor, the aspect ratios of synthesized BTN significantly increased from 7.2 (130℃) to 46 (250℃). With increment of the aspect ratio of P-BTN in PMIA composites the dielectric constants of corresponding composites increased from 6.6 to 9.8. At the same time, the dielectric losses of all composites were less than 0.025 in entire frequency range. Furthermore, the prepared composites with different aspect ratios of P-BTN also maintained satisfied insulation performance. The dielectric constant and dielectric loss in the range of -20℃ to 200℃ of P-BTN-250-10 composite maintains stable. This P-BTN/PMIA composites can further increase the energy storage density.

Key words:  composite      BaTiO3 nanowires      aspect ratio      poly(metaphenylene isophthalamide)      dielectric property     
Received:  05 September 2021     
ZTFLH:  TB332  
Fund: Natural Science Foundation of China(51608175);Program for Science and Technology Innovation Talent in Universities of Henan Province(20HASTIT016);Key Scientific and Technological Project of Henan Province(202102310605)
About author:  LI Yue, Tel: 15713669005, E-mail: liyue0128@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.581     OR     https://www.cjmr.org/EN/Y2022/V36/I7/527

Fig.1  Structure of PMIA
Fig.2  Schematic diagram of preparation of P-BTN/PMIA composite (T represents 130, 160, 190, 220 and 250)
Fig.3  SEM images of synthesized BTN (a) BTN-130, (b) BTN-160, (c) BTN-190, (d) BTN-220, (e) & (f) BTN-250; (g) SEM image of P-BTN-250; (h) Cross sectional morphology of P-BTN-250-10 composite
Fig.4  Length distribution and diameter distribution of BTN and the relationship between BTN aspect ratio and synthesized temperature
Fig.5  XRD spectra of BT and BTN-190 (a), FTIR spectra of BTN-190 and P-BTN-190 (b) and XPS spectra of BTN-190 and P-BTN-190 (c)
Fig.6  Dielectric constant (a, b), dielectric loss (c), conductivity (d) of PMIA composites with 10% different aspect ratios of P-BTN
Fig.7  Dielectric constant (a), dielectric loss (b), conductivity (c) of P-BTN-250-10 as a function of temperature
1 Shen Y, Zhang X, Li M, et al. Polymer nanocomposite dielectrics for electrical energy storage [J]. Natl. Sci. Rev., 2017, 4: 23
doi: 10.1093/nsr/nww066
2 Prateek, Vijay K T, Raju K G. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects [J]. Chem. Rev., 2016, 116: 4260
doi: 10.1021/acs.chemrev.5b00495 pmid: 27040315
3 Hu H L, Zhang F, Luo S B, et al. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage [J]. Nano Energy, 2020, 74: 104844
doi: 10.1016/j.nanoen.2020.104844
4 Li Q, Yao F Z, Liu Y, et al. High-temperature dielectric materials for electrical energy storage [J]. Annu. Rev. Mater. Sci., 2018, 48: 219
doi: 10.1146/annurev-matsci-070317-124435
5 Janet S H, Steven G G. Polymer capacitor dielectrics for high temperature applications [J]. ACS Appl. Mater. Interfaces 2018, 10: 29189
6 Li H, Liu F H, Fan B, et al. Nanostructured ferroelectric-polymer composites for capacitive energy storage [J]. Small Methods, 2018, 6: 1700399
7 Zhu X T, Yang J, Davoud D, et al. Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss [J]. Compos. Part A: Appl. Sci. Manufac., 2019, 125: 105521
doi: 10.1016/j.compositesa.2019.105521
8 Liu S H, Zhai J W. Improving the dielectric constant and energy density of poly(vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylpyrrolidone [J]. J. Mater. Chem. C, 2015, 3: 1511
9 He D L, Wang Y, Chen X Q, et al. Core-shell structured BaTiO3@Al2O3 nanoparticles in polymer composites for dielectric loss suppression and breakdown strength enhancement [J]. Compos. Part A: Appl. Sci. Manufac., 2017, 93: 137
doi: 10.1016/j.compositesa.2016.11.025
10 Wang J, Liu S H, Wang J Y, et al. Improving dielectric properties and energy storage performance of poly(vinylidene fluoride) nanocomposite by surface-modified SrTiO3 nanoparticles [J]. J. Alloy. Compd., 2017, 726: 587
doi: 10.1016/j.jallcom.2017.07.341
11 Feng Y L, Li W F, Hou Y, et al. Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape [J]. J. Mater. Chem. C, 2015, 3: 1250
doi: 10.1039/C4TC02183E
12 Huang X Y, Sun B, Zhu Y K, et al. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications [J]. Prog. Mater. Sci., 2019, 100: 187
doi: 10.1016/j.pmatsci.2018.10.003
13 Duan G Y, Wang Y, Yu J R, et al. Preparation of PMIA dielectric nanocomposite with enhanced thermal conductivity by filling with functionalized graphene-carbon nanotube hybrid fillers [J]. Appl. Nanosci., 2019, 9: 1743
doi: 10.1007/s13204-019-00955-0
14 Tang H, Zhou Z, Sodano H A. Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites [J]. ACS Appl. Mater. Interfaces, 2014, 6: 5450
doi: 10.1021/am405038r
15 Duan G Y, Cao Y, Quan J Y, et al. Bioinspired construction of BN@polydopamine@Al2O3 fillers for preparation of a polyimide dielectric composite with enhanced thermal conductivity and breakdown strength [J]. Journal of Materials Science, 2020, 55: 8170
doi: 10.1007/s10853-020-04596-5
16 Jin Y, Xia N, Gerhardt R A. Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation [J]. Nano Energy, 2016, 30: 407
doi: 10.1016/j.nanoen.2016.10.033
17 Luo S B, Shen Y B, Yu S H, et al. Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites [J]. Energy Environ. Sci., 2017, 10: 137
doi: 10.1039/C6EE03190K
18 Wu J, Qin N, Bao D H, et al. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration [J]. Nano Energy, 2018, 45: 44
doi: 10.1016/j.nanoen.2017.12.034
19 Hu P H, Sun W, D, Fan M Z, et al. Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers [J]. Appl. Surf. Sci., 2018, 458: 743
doi: 10.1016/j.apsusc.2018.07.128
20 Nagao M, Kimura T, Mizuno Y, et al. Detection of Joule Heating before Dielectric Breakdown in Polyethylene[J]. IEEE T. Dielect. El. In., 1990, 25: 715
21 Wang Z D, Yang M M, Cheng Y H, et al. Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine [J]. Compos. Part A: Appl. Sci. Manufac., 2019, 118: 302
doi: 10.1016/j.compositesa.2018.12.022
22 Chanmal V C. Dielectric relaxations in PVDF/BaTiO3 nanocomposites [J]. Express Polym. Lett., 2008, 2: 294
doi: 10.3144/expresspolymlett.2008.35
23 Pan Z B, Yao L M, Zhai J W, et al. Interfacial Coupling Effect in Organic/Inorganic Nanocomposites with High Energy Density [J]. Adv. Mater., 2018, 30: 1705662
doi: 10.1002/adma.201705662
24 Luo H, Wu Z, Zhou X F, et al. Enhanced performance of P(VDF-HFP) composites using two-dimensional BaTiO3 platelets and graphene hybrids [J]. Compos. Sci. Technol., 2018, 160: 237
doi: 10.1016/j.compscitech.2018.03.034
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!