|
|
Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk |
JIANG Ping1( ), WU Lihua2, LV Taiyong3, Pérez-Rigueiro José4, WANG Anping1 |
1.College of Life Sciences, Institute of Eco-environment and Resources, Key Laboratory for Biodiversity Science;and Ecological Engineering, Jinggangshan University, Ji'an 343009, China 2.Business College, Jinggangshan University, Ji'an 343009, China 3.Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Sichuan Key Laboratory of Nuclear Medicine and Molecular Imaging, Luzhou 646000, China 4.Departamento de Ciencia de Materiales, Centro de Tecnologı´a Biomédica, Universidad Politécnica de Madrid, Madrid 28040, Spain |
|
Cite this article:
JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk. Chinese Journal of Materials Research, 2022, 36(10): 747-759.
|
Abstract In order to analyze and explore the changes of deformation, mechanical behavior and structure of spider major ampullate gland silk (abbr: Mas) during repetitive stretching and their relationship, the mechanical behavior of spider Mas and the changes of protein secondary structure after repetitive stretching were tested and investigated through the design of different combinations of loading elongation and the interval relaxation between the two stretching via electronic universal testing machine and laser Raman spectrometer. The results show that spider Mas presents excellent repetitive stretching characteristics with the gradual increase of the initial modulus but the a marginal variation in yield stress; When two groups of spider Mas fibers were stretched in the condition of gradual increase of the set stretching length and the set time intervals as 15~25 s and 5 min respectively, as a result, the acquired tensile curves of the two groups overlapped fairly well, even for the samples were stretched over the yield point, or even over the yield zone and into the strengthening zone as well; It reveals that in case the stretching test of the above two groups of samples has been interrupted for a long time interval of ≥23 min in between two stretching tests, the mechanical behavior of samples may be reproduced as soon as only one stretch again independent from the previous loading history. In other word, the above findings show that the mechanical behavior of spider Mas is similar to those of rubber's viscoelasticity. The results of Raman spectra showed that with the increase of the number of repetitive stretching and the set stretching length, the hydrogen bond between the random coils was broken. The interval after stretching seems to allow some structures to recover and contribute to the formation of the new β-turn or β-bend and PGⅡ β-sheet structure, After repetitive stretching for many times, the primitive β-sheet structure will be gradually destroyed, and almost all of it will be destroyed when Mas breaks. These findings may be helpful to guide the biomimetic design of novel fiber materials.
|
Received: 09 September 2021
|
|
Fund: National Natural Science Foundation of China(31960197);National Natural Science Foundation of China(31160420);National Natural Science Foundation of China(30760041);National Natural Science Foundation of Jiangxi Province(20151BAB204019);National Natural Science Foundation of Jiangxi Province(20202BAB203024);Training Program of Young Scientists (Jinggang Star) in Jiangxi Province(20133BCB23022);Education Department of Jiangxi Province through Science and Technology Projects(GJJ170626);Special Fund for Visiting Scholar of the Development Plan for Middle-aged and Young Teachers in Universities of Jiangxi Province(2016109) |
About author: JIANG Ping, Tel: 13879686023, E-mail: jping412@aliyun.com
|
1 |
Vienneau-Hathaway J M, Brassfield E R, Lane A K, et al. Duplication and concerted evolution of MiSp-encoding genes underlie the material properties of minor ampullate silks of cobweb weaving spiders [J]. BMC Evolutionary Biology, 2017, 17: 78
doi: 10.1186/s12862-017-0927-x
pmid: 28288560
|
2 |
Garwood R J, Dunlop J A, Selden P A, et al. Almost a spider: a 305-million-year-old fossil arachnid and spider origins [J]. Proceedings of the Royal Society B Biological Science, 2016, 283: 1827
|
3 |
Madurga R, Plaza G R, Blackledge T A, et al. Material properties of evolutionary diverse spider silks described by variation in a single structural Parameter [J]. Scientific Reports, 2016, 6: 18991
doi: 10.1038/srep18991
pmid: 26755434
|
4 |
Blackledge T A, Pérez-Rigueiro J, Plaza G R, et al. Sequential origin in the high performance properties of orb spider dragline silk [J]. Scientific Reports, 2012, 2: 782
doi: 10.1038/srep00782
pmid: 23110251
|
5 |
Swanson B O, Blackledge T A, Hayashi C Y, et al. Spider dragline silk: correlated and mosaic evolution in high-performance biological materials [J]. Evolution, 2006, 60(12): 2539
pmid: 17263115
|
6 |
Gosline J M, Demont M E, Denny M W. The strucure and properties of spider silk [J]. Endeavor, 1986, 10(1): 37
doi: 10.1016/0160-9327(86)90049-9
|
7 |
Vollrath F. Strength and structure of spider' silks [J]. Biological Macromolecules, 2000, 74 (2): 67
|
8 |
Jiang P, Wu L H, Xiao Y H, et al. Composition, structure and biological function of spider silk [J]. Chinese Journal of Zoology, 2014, 49(5): 778
|
|
蒋 平, 吴丽华, 肖永红 等. 蜘蛛丝的组成结构与生物学功能 [J]. 动物学杂志, 2014, 49(5): 778
|
9 |
Blamires S J, Nobbs M, Martens P J, et al. Multiscale mechanisms of nutritionally induced property variation in spider silks [J]. PLoS One, 2018, 13(2): 1
|
10 |
Blamires S J, Blackledge T A, I-Min Tso. Physicochemical Property Variation in Spider Silk: Ecology, Evolution, and Synthetic Production [J]. Annual Review of Entomology, 2017, 62: 443
doi: 10.1146/annurev-ento-031616-035615
pmid: 27959639
|
11 |
Madsen B, Shao Z Z, Vollrath F, et al. variability in the mechanical properties of spider silks on three leveles: interspecific, intraspecific and intraindividual [J]. International Journal of Biological Macromolecules, 1999, 24(2-3): 301
pmid: 10342779
|
12 |
Osaki S, Yamamoto K, Matsuhira T, et al. The effects of seasonal changes on the molecular weight of Nephila clavata spider silk [J]. Polymer Journal Advance Online Publication, 2016: 1
|
13 |
Elices M, Guinea G V, Pérez-Rigueiro J, et al. Finding inspiration in argiope trifasciata spider silk fibers [J]. Journal of the Minerals Metals, Materials Society, 2005, 57(2): 60
|
14 |
Fang G Q, Huang Y F, Tang Yu Z, et al. Insights into silk formation process: correlation of mechanical properties and structural evolution during artificial spinning of silk fibers [J]. ACS Biomater. Sci. Eng., 2016, 2: 1992
doi: 10.1021/acsbiomaterials.6b00392
|
15 |
Peng P, Du Y, Zheng J. Reconfigurable bioinspired framework nucleic acid nanoplatform dynamically manipulated in living cells for subcellular imaging [J]. Angewandte Chemie International Edition, 2019, 58(6) : 1648
doi: 10.1002/anie.201811117
|
16 |
Zhang X, Liu W F, Yang D J, et al. Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent uv-blocking performance [J]. Advanced Functional Materials, 2019, 29(4): 1
|
17 |
Vollrath F, Porter D, Holland C. The science of silks [J]. MRS Bulletin, 2013, 38(1): 73
doi: 10.1557/mrs.2012.314
|
18 |
Shao Z Z, Vollrath F, Sirichaisit J, et al. Analysis of spider silk in native and supercontracted states using Raman spectroscopy [J]. Polymer, 1999, 40: 2493
doi: 10.1016/S0032-3861(98)00475-3
|
19 |
Jiang P, Wu L H, Liao X J, et al. Relationship of Tensile behaviors and biological function of silk fibers from egg case of argiope bruennichi [J]. Sichuan Journal of Zoology, 2018, 37(5): 556
|
|
蒋 平, 吴丽华, 廖信军 等. 横纹金蛛卵袋丝的力学行为与生物学功能之间的关系 [J]. 四川动物, 2018, 37(5): 556
|
20 |
Elices M, Pérez-Rigueiro J, Plaza G R, et al. Recovery in spider silk fibers [J]. Journal of Applied Polymer Science, 2004, 92: 3537
doi: 10.1002/app.20383
|
21 |
Guinea G V, Cerdeira M, Plaza G R, et al. Recovery in Viscid Line Fibers [J]. Biomacromolecules 2010, 11: 1174
|
22 |
Jiang P, Lv T Y, Xiao Y H, et al. Morphologies and tensile behaviors of three types of spider silks with different functions [J]. Journal of Materials Science & Engineering, 2011, 29(5): 734
|
|
蒋 平, 吕太勇, 肖永红 等. 三种不同功能蛛丝的超微结构与拉伸力学行为 [J]. 材料科学与工程学报, 2011, 29(5): 734
|
23 |
Jiang P, Lv T Y, Xiao Y H, et al. Physico-chemical structural characterizations and mechanical properties of egg case silk from the two spiders: Argiope Amoena and Nephila Clavata [J]. Acta Biophysica Sinica, 2010, 26(2): 149
|
|
蒋 平, 吕太勇, 肖永红 等. 悦目金蛛和棒络新妇卵袋丝物理化学结构表征及其力学性能 [J]. 生物物理学报, 2010, 26(2): 149
|
24 |
Jiang P, Lv T Y, Xiao Y H, et al. Amino acid profiles and tensile behaviors of egg case silk of spider Nephila clavata [J]. Journal of Textile Research, 2010, 31(5): 1
doi: 10.1177/004051756103100101
|
|
蒋 平, 肖永红, 廖信军 等. 棒络新妇卵袋丝氨基酸组成及其力学行为 [J]. 纺织学报, 2010, 31(5): 1
|
25 |
Jiang P, Marí-Buyé N, Guinea G V, et al. Spider silk gut: development and characterization of a novel strong spider silk fiber [J]. Sci. Rep., 2014, 4: 7326
doi: 10.1038/srep07326
pmid: 25475975
|
26 |
Jiang P, Ruiz V, Müller C, et al. Preparation and characterization of Nephila clavipes tubuliform silk gut [J]. Soft Matter, 2019, 15, 2960
doi: 10.1039/C9SM00212J
|
27 |
Jiang P, Liu H F, Wang C H, et al. Tensile behavior and morphology of differently degummed Silkworm cocoon silk fibres [J]. Materials Letters, 2006, 60: 919
doi: 10.1016/j.matlet.2005.10.056
|
28 |
Guinea G V, Pérez-Rigueiro J, Plaza G R, et al. Volume constancy during stretching of spider silk [J]. Biomacromolecules, 2006, (7): 2173
pmid: 16827584
|
29 |
Guinea G V, Elices M, Pérez-Rigueiro J, et al. Stretching of supercontracted fibers: a link between spinning and the variability of spider silk [J]. J. Exp. Biol, 2005, 208: 25
doi: 10.1242/jeb.01344
|
30 |
Rousseau M E, Lefévre T, Pézolet M, et al. Study of protein conformation and orientation in silkworm and spider silk fibers using raman microspectroscopy [J]. Biomacromolecules, 2004, 5: 2247
doi: 10.1021/bm049717v
|
31 |
Benevides J M, Overman S A, Thomas G J. Raman spectroscopy of proteins [J]. Current Protocols in Protein Science, 2003, 17(8): 1
|
32 |
Chen L H, Song Y H, Yue S J, et al. Analysis of fatigue test parameters of nylon warp knitted fabric [J]. Journal of Knitting Industry, 2007, 6: 62
|
|
陈丽华, 宋玉惠, 岳淑杰 等. 氯纶经编针织物疲劳性试验参数的分析 [J]. 针织工业, 2007, 6: 62
|
33 |
Dai J F, Zhang C, Wang Q, et al. Preparation and characterization of polymethylmetharylate/aligned SWCNT composites with by repeated stretching [J]. New Carbon Materials, 2008, 23(3): 201
|
|
戴剑锋, 张 超, 王 青 等. 反复拉伸法制备单壁碳纳米管定向排列的SWCNT/PMMA复合材料 [J]. 新型炭材料, 2008, 23(3): 201
|
34 |
He W B, Jin M, Zhao Y L. Mechanic behaviors of the thermoviscoelastic matrix composites with shape memory fiber [J]. Chinese Journal of Materials Research, 2009, 23(1): 17
|
|
贺微波, 金 明, 赵永利. 形状记忆纤维热粘弹性基体复合材料的力学行为 [J]. 材料研究学报, 2009, 23(1): 17
|
35 |
Emile O, Floch A L, Vollrath F. Shape memory in spider dragline [J]. Nature: Brief Communication, 2006, 440(30): 621
|
36 |
Na H D. Mechanical behavior and stretching crystallization of rubber [J]. World Rubber Industry, 2009, 36(3): 20
|
|
那洪栋. 橡胶的力学行为和拉伸结晶化 [J]. 世界橡胶工业, 2009, 36(3): 20
|
37 |
Fukushima Y. Secondary structural analysis in the solid state for analogous sequential polypeptides of glycine-rich sequence of spider dragline silk [J]. Polymer Bulletin, 2000, 45: 237
doi: 10.1007/s002890070026
|
38 |
Zhou W, Chen X, Shao Z Z. Conformation studies of silk proteins with infrared and raman spectroscopy [J]. Progress in Chemistry, 2006, 18(11): 1514
|
|
周 文, 陈 新, 邵正中. 红外和拉曼光谱用于对丝蛋白构象的研究 [J]. 化学进展, 2006, 18(11): 1514
|
39 |
Sirichaisit J, Young R J, Vollrath F. Molecular deformation in spider dragline silk subjected to stress [J]. Polymer, 2000, 41: 1223
doi: 10.1016/S0032-3861(99)00293-1
|
40 |
Casem M L, Turner D, Houchin K. Protein and amino acid composition of silks from the cob weaver, Latrodectus Hesperus (black widow) [J]. International Journal of Biological Macromolecules, 1999, 24: 103
pmid: 10342753
|
41 |
Dicko C, Vollrath F, Kenney J M. Spider silk protein refolding is controlled by changing pH [J]. Biomacromolecules, 2004, (5): 704
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|