Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (10): 760-768    DOI: 10.11901/1005.3093.2021.302
ARTICLES Current Issue | Archive | Adv Search |
Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics
ZENG Renfen, JIANG Xiangping(), CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen
Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
Cite this article: 

ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics. Chinese Journal of Materials Research, 2022, 36(10): 760-768.

Download:  HTML  PDF(4082KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bi7-x Er x Ti4.5W0.5O21(BTW-BIT-xEr3+, x=0.05, 0.10, 0.15, 0.25, 0.35) lead-free piezoelectric ceramics with intergrowth bismuth-layered structure was fabricated via solid phase synthesizing method. While the effect of Er3+-doping on their up conversion fluorescence and electrical properties was systemically investigated. The results of XRD and SEM reveal the formation of a single phase with bismuth-layered structure of Bi7-x Er x Ti4.5W0.5O21 (BTW-BIT-xEr3+(x=0.05, 0.10, 0.15, 0.25, 0.35)). Three emissions of two green and one red were observed for all the BTW-BIT-xEr3+ products with chemical compositions within the desired range under 980nm light excitation. The three emissions centered at 532 nm, 548 nm and 660 nm, and the intensity ratio of red to green emissions could be adjusted by changing the doping amount of Er3+ ions. According to the intensity ratio of 532 nm to 548 nm for BTW-BIT-0.15Er3+ in the range of 290~440 K, the temperature sensitivity was fitted and showed the maximum temperature sensitivity of 0.0023 K-1 at 440 K. The dielectric and impedance of BTW-BIT-xEr3+ ceramics were analyzed. The results show that Er3+ ions replaced Bi3+ ions in the pseudo-perovskite layer, therewith the oxygen vacancy concentration decreases, which may be accounted for the decrease of high-temperature dielectric loss, the raising of activation energy and the enhancement of piezoelectric constant. The BTW-BIT-0.15Er3+ ceramic possesses the comprehensive properties: d33=14pC/N, Tc=697℃ and tanδ=0.53%, as well as the optimal photoluminescence and good thermal stability.

Key words:  inorganic nonmetallic materials      intergrowth ceramics      bismuth-layered structure      up-conversion luminescence      electrical properties     
Received:  12 May 2021     
ZTFLH:  TQ174  
Fund: National Natural Science Foundation of China(51862016);National Natural Science Foundation of China(52062018);National Natural Science Foundation of China(51762024);Natural Science Foundation of Jiangxi Province(20192BAB206008);Natural Science Foundation of Jiangxi Province(20192BAB212002);Foundation of Jiangxi Provincial Education Department(GJJ190712);Foundation of Jiangxi Provincial Education Department(GJJ201331)
About author:  JIANG Xiangping, Tel: (0798)8499678, E-mail: jiangxp64@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.302     OR     https://www.cjmr.org/EN/Y2022/V36/I10/760

Fig.1  XRD patterns for BTW-BIT-xEr3+ ceramics at room temperature (a) and enlargement of BTW-BIT-xEr3+ ceramics with diffraction angle 2θ in the range of 29°~30.5° (b)
Fig.2  Graphics of Rietveld refinements for BTW-BIT sample (a) and the lattice parameter (a, b, c) and cell volume (V) of BTW-BIT-xEr3+ after refinement (b)
Fig.3  SEM images of thermal etched face of BTW-BIT-xEr3+ samples (a) x=0.00, (b) x=0.15 (c) x=0.25 (d) x=0.35
Fig.4  Up-conversion emission spectra at room temperature for BTW-BIT-xEr3+ (x=0.05、0.10、0.15、0.25、0.35)
Fig.5  Energy level diagram of up converted luminescent of Er3+
Fig.6  Intensity ratio of the green emission centred at 548 nm and the red emission centred at 660 nm. Inset CIE chromaticity coordinates of BTW-BIT-xEr3+ ceramics
Fig.7  Up-conversion emission spectra of BTW-BIT-xEr3+ in the temperature range of 290 K to 440 K (a) and the relation between FIR and temperature, the inset shows temperature dependence of sensitivity (b)
Fig.8  Permittivity temperature relationship of BTW-BIT-xEr3+ (a), a larger version of the permittivity (b) and a larger version of dielectric loss (c)
x/molTc/℃d33/pC·N-1εrεm

tanδ

/%

Qm
0.006896.9245.914960.90366
0.056919.9243.713950.88404
0.1069910.3225.412420.731500
0.1569714.0221.512200.532055
0.2569112.1221.210050.431676
0.356918.6214.59900.41540
Table 1  Comprehensive electrical performances for BTW-BIT-xEr3+ ceramics
Fig.9  Relationship between electrical impedance and frequency
Fig.10  Cole-Cole diagram for BTW-BIT-xEr3+ ceramics (a) x=0.00, (b) x=0.15
Fig.11  Depolarization curve of BTW-BIT-xEr3+
1 Wei T, Zhao C Z, Li C P, et al. Photoluminescence and ferroelectric properties in Eu doped Bi4Ti3O12-SrBi4Ti4O15 intergrowth ferroelectric ceramics [J]. J. Alloys Compd., 2013, 577: 728
doi: 10.1016/j.jallcom.2013.06.186
2 Marzouk M A, Elkashef I M, Elbatal H A. Luminescent, semiconducting, thermal, and structural performance of Ho3+-doped lithium borate glasses with CaF2 or MgF2 [J]. Appl. Phys., 2019, 125A: 97
3 Zheng K Z, Liu Z Y, Lv C J, et al. Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ co-doped NaLuF4 microcrystals [J]. J. Mater. Chem., 2013, 1C: 5502
4 Du P, Luo L H, Li W P, et al. Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic [J]. Appl. Phys. Lett., 2014, 104: 152902
doi: 10.1063/1.4871378
5 Dong B, Cao B S, He Y Y, et al. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare‐earth oxides [J]. Adv. Mater., 2012, 24: 1987
doi: 10.1002/adma.201200431
6 Qian L P, Zhou L H, Too H P, et al. Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion nanoparticles for photothermal destruction of BE(2)-C neuroblastoma cells [J]. J. Nano-part. Res., 2011, 13: 499
7 Trupke T, Green M A, Würfel P. Improving solar cell efficiencies by down-conversion of high-energy photons [J]. J. Appl. Phys., 2002, 92: 1668
doi: 10.1063/1.1492021
8 Wang H Q, Batentschuk M, Osvet A, et al. Rare‐earth ion doped up‐conversion materials for photovoltaic applications [J]. Adv. Mater., 2011, 23: 2675
doi: 10.1002/adma.201100511
9 Ye H Y, Zhou Q H, Niu X H, et al. High-temperature ferroelectricity and photoluminescence in a hybrid organic-inorganic compound: (3-Pyrrolinium)MnCl3 [J]. J. Am. Chem. Soc., 2015, 137: 13148
doi: 10.1021/jacs.5b08290
10 Bai G X, Tsang M K, Hao J H. Tuning the luminescence of phosphors: beyond conventional chemical method [J]. Adv. Opt. Mater., 2015, 3: 431
doi: 10.1002/adom.201400375
11 Zhou H, Chen X M, Wu G H, et al. Significantly enhanced red photoluminescence properties of nanocomposite films composed of a ferroelectric Bi3.6Eu0.4Ti3O12 matrix and highly c-axis-oriented ZnO nanorods on Si substrates prepared by a hybrid chemical solution method [J]. J. Am. Chem. Soc., 2010, 132: 1790
doi: 10.1021/ja910388f
12 Yu L, Hao J G, Xu Z J, et al. Ho‐doped SrBi2Nb2O9 multifunctional ceramics with bright green emission and good electrical properties [J]. Phys. Status Solidi, 2017, 214A: 1700276
13 Zou H, Hui X W, Wang X S, et al. Luminescent, dielectric, and ferroelectric properties of Pr doped Bi7Ti4NbO21 multifunctional ceramics [J]. J. Appl. Phys., 2013, 114: 223103
doi: 10.1063/1.4842775
14 Wei T, Li C P, Zhou Q J, et al. Upconversion luminescence and ferroelectric properties of Er3+ doped Bi4Ti3O12-SrBi4Ti4O15 [J]. Mater. Lett., 2014, 118: 92
doi: 10.1016/j.matlet.2013.12.054
15 Jiang X G, Jiang X P, Chen C, et al. Photoluminescence, structural, and electrical properties of erbium-doped Na0.5Bi4.5Ti4O15 ferroelectric ceramics [J]. J. Am. Ceram. Soc., 2016, 99: 1332
doi: 10.1111/jace.14115
16 Luo S, Noguchi Y, Miyayama M, et al. Rietveld analysis and dielectric properties of Bi2WO6-Bi4Ti3O12 ferroelectric system [J]. Mater. Res. Bull., 2001, 36: 531
doi: 10.1016/S0025-5408(01)00516-5
17 Zhuang J S, Jiang X P, Chen C, et al. Enhanced piezoelectric properties and low electrical conductivity of Ce-doped Bi7Ti4.5W0.5O21 intergrowth piezoelectric ceramics [J]. Ceram. Int., 2020, 46: 26616
doi: 10.1016/j.ceramint.2020.07.130
18 Wang C M, Wang J F, Mao C L, et al. Enhanced dielectric and piezoelectric properties of aurivillius-type potassium bismuth titanate ceramics by cerium modification [J]. J. Am. Ceram. Soc., 2008, 91: 3094
doi: 10.1111/j.1551-2916.2008.02557.x
19 Wei T, Zhang T B, Ma Y J, et al. Up-conversion photoluminescence and temperature sensing properties of Er3+-doped Bi4Ti3O12 nanoparticles with good water-resistance performance [J]. RSC Adv., 2016, 6: 7643
doi: 10.1039/C5RA24776D
20 Zhang Y, Li J, Chai X N, et al. Enhanced electrical properties, color-tunable up-conversion luminescence, and temperature sensing behaviour in Er-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics [J]. J. Appl. Phys., 2017, 121: 124102
doi: 10.1063/1.4979096
21 Bokolia R, Thakur O P, Rai V K, et al. Dielectric, ferroelectric and photoluminescence properties of Er3+ doped Bi4Ti3O12 ferroelectric ceramics [J]. Ceram. Int., 2015, 41: 6055
doi: 10.1016/j.ceramint.2015.01.062
22 Wei Y L, Liu X Y, Chi X N, et al. Intense upconversion in novel transparent NaLuF4:Tb3+, Yb3+ glass-ceramics [J]. J. Alloys Compd., 2013, 578: 385
doi: 10.1016/j.jallcom.2013.06.014
23 Wei Y L, Chi X N, Liu X Y, et al. Novel upconversion behavior in Ho3+-doped transparent oxyfluoride glass-ceramics containing NaYbF4 nanocrystals [J]. J. Am. Ceram. Soc., 2013, 96: 2073
doi: 10.1111/jace.12457
24 Tang Y X, Shen Z Y, Du Q X, et al. Enhanced pyroelectric and piezoelectric responses in W/Mn-codoped Bi4Ti3O12 Aurivillius ceramics [J]. J. Eur. Ceram. Soc., 2018, 38: 5348
doi: 10.1016/j.jeurceramsoc.2018.08.025
25 Zou H, Li J, Cao Q F, et al. Intensive up-conversion photoluminescence of Er3+-doped Bi7Ti4NbO21 ferroelectric ceramics and its temperature sensing [J]. J. Adv. Dielectr., 2014, 4: 1450028
doi: 10.1142/S2010135X14500283
26 Ji W B, Chu R Q, Xu Z J, et al. Effect of CeO2-doping on properties of SrNa0.5Bi4.5Ti5O18- based high temperature lead-free piezoelectric ceramics [J]. Chin. J. Mater. Res., 2015, 29: 201
姬万滨, 初瑞清, 徐志军 等. CeO2掺杂对SrNa0.5Bi4.5Ti5O18高温无铅压电陶瓷性能的影响 [J]. 材料研究学报, 2015, 29: 201
doi: 10.11901/1005.3093.2014.460
27 Jiang Y L, Jiang X P, Chen C, et al. Photoluminescence and electrical properties of Er3+-doped Na0.5Bi4.5Ti4O15—Bi4Ti3O12 inter-growth ferroelectric ceramics [J]. Front. Mater. Sci., 2017, 11: 51
doi: 10.1007/s11706-017-0367-y
28 Luo Y H, Jiang X P, Chen C, et al. Effect of Er3+-doping on electrical and photoluminescence properties of Na0.25K0.25Bi2.5Nb2O9 piezoelectric ceramics [J]. J. Chin. Ceram. Soc., 2016, 44: 1281
罗雨涵, 江向平, 陈 超 等. Er3+掺杂对Na0.25K0.25Bi2.5Nb2O9压电陶瓷电学和光学性能的影响 [J]. 硅酸盐学报, 2016, 44: 1281
29 Wei T, Zhao C Z, Zhou Q J, et al. Bright green upconversion emission and enhanced ferroelectric polarization in Sr1-1.5 x Er x Bi2Nb2O9 [J]. Opt. Mater., 2014, 36: 1209
doi: 10.1016/j.optmat.2014.03.001
30 Huang F, Gao Y, Zhou J, et al. Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing [J]. J. Alloys Compd., 2015, 639: 325
doi: 10.1016/j.jallcom.2015.02.228
31 Li C R, Dong B, Li S F, et al. Er3+-Yb3+ co-doped silicate glass for optical temperature sensor [J]. Chem. Phys. Lett., 2007, 443: 426
doi: 10.1016/j.cplett.2007.06.081
32 Wang W, Shan D, Sun J B, et al. Aliovalent B-site modification on three- and four-layer Aurivillius intergrowth [J]. J. Appl. Phys., 2008, 103: 044102
33 Durán-Martín P, Castro A, Millán P, et al. Influence of Bi-site substitution on the ferroelectricity of the Aurivillius compound Bi2SrNb2O9 [J]. J. Mater. Res., 1998, 13: 2565
doi: 10.1557/JMR.1998.0358
34 Wu Y, Limmer S J, Chou T P, et al. Influence of tungsten doping on dielectric properties of strontium bismuth niobate ferroelectric ceramics [J]. J. Mater. Sci. Lett., 2002, 21: 947
doi: 10.1023/A:1016077724427
35 Tian X X, Qu S B, Wang B K, et al. Intergrowth bismuth layer-structured Na0.5Bi2.5Nb2O9-Bi4Ti3O12 high temperature ferroelectrics ceramics [J]. J. Inorg. Organomet. Polym. Mater., 2014, 24: 355
doi: 10.1007/s10904-013-9971-1
36 Kumar S, Varma K B R. Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics [J]. J. Phys., 2009, 42D: 075405
37 Diao C L, Zheng H W, Zhang Y G, et al. Structure, photoluminescence and electrical properties of BaBi3.5Eu0.5Ti4O15 ceramics [J]. Ceram. Int., 2014, 40: 13827
doi: 10.1016/j.ceramint.2014.05.099
38 Long C B, Fan H Q. Effect of lanthanum substitution at A site on structure and enhanced properties of new Aurivillius oxide K0.25Na0.25La0.5Bi2Nb2O9 [J]. Dalton Trans., 2012, 41: 11046
doi: 10.1039/c2dt31085f pmid: 22858738
39 Jiang X P, Jiang X A, Chen C, et al. Effect of potassium sodium niobate (KNN) substitution on the structural and electrical properties of Na0.5Bi4.5Ti4O15 ceramics [J]. J. Phys., 2016, 49D: 125101
40 Huang Y M, Shi D P, Liu L J, et al. High-temperature impedance spectroscopy of BaFe0.5Nb0.5O3 ceramics doped with Bi0.5Na0.5TiO3 [J]. Appl. Phys., 2014, 114A: 891
41 Rehman F, Jin H B, Li J B. Effect of reduction/oxidation annealing on the dielectric relaxation and electrical properties of Aurivillius Na0.5Gd0.5Bi4Ti4O15 ceramics [J]. RSC Adv., 2016, 6: 35102
doi: 10.1039/C6RA04628B
42 Xu Q, Lanagan M T, Luo W, et al. Electrical properties and relaxation behavior of Bi0.5Na0.5TiO3-BaTiO3 ceramics modified with NaNbO3 [J]. J. Eur. Ceram. Soc., 2016, 36: 2469
doi: 10.1016/j.jeurceramsoc.2016.03.011
[1] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[2] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[3] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[4] OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. 材料研究学报, 2022, 36(2): 152-160.
[5] FENG Kai, L Guangzhe, L Bin. Synthesis and Upconversion Luminescence of Ultrafine (Lu0.5In0.5)2O3:Tm3+,Yb3+ Powders[J]. 材料研究学报, 2021, 35(8): 591-596.
[6] WANG Hao, ZHAO Hongfeng, KANG Jiashuang, ZHOU Yuanxiang, XIE Qingyun. Properties of ZnO Varistor Ceramics Co-doped with B2O3 and Al2O3[J]. 材料研究学报, 2021, 35(2): 110-114.
[7] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[8] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[9] LIN Wenwen, HE Xiaochun, XU Zhijun, WANG Ziheng, CHU Ruiqing. Influence of Bi2WO6 on Electric Properties of ZnO Varistor Ceramics[J]. 材料研究学报, 2020, 34(4): 285-290.
[10] ZHOU Shuyu,JIN Xiaozhe,LIU jia,TIAN Ruixue,WU Aimin,HUANG Hao. Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries[J]. 材料研究学报, 2020, 34(3): 191-197.
[11] WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. 材料研究学报, 2020, 34(11): 811-821.
[12] TANG Yang. Band Gap Energy and Near Band Edge Emission Blue Shifts of ZnO Nanorods Prepared by Electrodeposition[J]. 材料研究学报, 2020, 34(11): 875-880.
[13] Li YANG,Zhiyuan TANG,Tengteng LI,Qiwei DUAN,Jiali HU,Sufang ZHANG,Zhaoqiang ZHENG. Preparation and Photovoltaic Performance of Novel Ruthenium Complex and Its Self-assembly Membrane[J]. 材料研究学报, 2019, 33(8): 614-620.
[14] Chen FU,Likun WANG,Rumeng QIU,Gui WANG,Wenhao CAI,Jingkai YANG,Hongli ZHAO. Effect of Solvents on Structure and Photoelectric Properties of FTO Thin Films[J]. 材料研究学报, 2019, 33(4): 277-283.
[15] Yongjie CUI,Yong LIU,Shuai PENG,Keqing HAN,Muhuo YU. Preparation and Property of SiBN Ternary Ceramic Fibers Prepared by Polyborosilazane-Derived Method[J]. 材料研究学报, 2019, 33(2): 155-160.
No Suggested Reading articles found!