|
|
Effect of Stress Triaxiality on Hydrogen Embrittlement Susceptibility of Quenched Boron Steel B1500HS |
ZHANG Botao1,2, LI Shuhui1,2( ), LI Yongfeng1,2, HAN Guofeng1,2 |
1.State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China 2.Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240, China |
|
Cite this article:
ZHANG Botao, LI Shuhui, LI Yongfeng, HAN Guofeng. Effect of Stress Triaxiality on Hydrogen Embrittlement Susceptibility of Quenched Boron Steel B1500HS. Chinese Journal of Materials Research, 2022, 36(10): 739-746.
|
Abstract The Hydrogen embrittlement (HE) susceptibility of the quenched boron steel B1500HS before and after being electrochemical hydrogen charging by applying different stresses, such as simple shear, uniaxial tensile and analogous plane strain, respectively was investigated via slow strain rate tensile test. Meanwhile, the stress-strain curves for both the H-free and H-charged steels were acquired and then the HE susceptibility of the test steels was calculated based on the equivalent plastic strain to reveal the effects of the stress state on the HE susceptibility of the quenched boron steel. Furthermore, the fracture features of the steels were characterized by SEM and EBSD to analyze the HE mechanism for the different applied stress. The results show that the HE mechanisms of the quenched boron steel by simple shear stress is substantial different to those by tensile stress, which indicated that the HE susceptibility during testing by simple shear stress is much lower than that by tensile stress.
|
Received: 15 April 2021
|
|
Fund: National Natural Science Foundation of China(52005329);China Postdoctoral Science Foundation(2020M671120) |
About author: LI Shuhui, Tel: (021)34206784, E-mail: lishuhui@sjtu.edu.cn
|
1 |
Li H, Zhao G, He L, et al. Research on the constitutive relationship of hot stamping boron steel B1500HS at high temperature [J]. J. Mech. Eng., 2012, 48: 21
|
|
李辉平, 赵国群, 贺连芳 等. 热冲压硼钢B1500HS高温本构方程的研究 [J]. 机械工程学报, 2012, 48: 21
|
2 |
McMahon C. Hydrogen-induced intergranular fracture of steels [J]. Eng. Fract. Mech., 2001, 68: 773
doi: 10.1016/S0013-7944(00)00124-7
|
3 |
Lynch S. Hydrogen embrittlement (HE) phenomena and mechanisms [J]. Corros. Rev., 2012, 30: 105
|
4 |
Yoo J, Jo M C, Kim D W, et al. Effects of Cu addition on resistance to hydrogen embrittlement in 1 GPa-grade duplex lightweight steels [J]. Acta Mater., 2020, 196: 370
doi: 10.1016/j.actamat.2020.06.051
|
5 |
Kumar D S, Vishwakarma M. Hydrogen embrittlement in different materials: A review [J]. Int. J. Hydrog. Energy, 2018, 43: 21603
doi: 10.1016/j.ijhydene.2018.09.201
|
6 |
Lee S J, Ronevich J A, Krauss G, et al. Hydrogen embrittlement of hardened low-carbon sheet steel [J]. ISIJ Int., 2010, 50: 294
doi: 10.2355/isijinternational.50.294
|
7 |
Chen Y, Xu Z M, Zhang X X, et al. Irreversible hydrogen embrittlement study of B1500HS high strength boron steel [J]. Mater. Des., 2021, 199:109404
doi: 10.1016/j.matdes.2020.109404
|
8 |
Wang M Q, Akiyama E, Tsuzaki K. Hydrogen degradation of a boron-bearing steel with 1050 and 1300MPa strength levels [J]. Scr. Mater., 2005, 52: 403
doi: 10.1016/j.scriptamat.2004.10.023
|
9 |
Sofronis P, McMeeking R M. Numerical analysis of hydrogen transport near a blunting crack tip [J]. J. Mech. Phys. Solids, 1989, 37: 317
doi: 10.1016/0022-5096(89)90002-1
|
10 |
Oriani R A. The diffusion and trapping of hydrogen in steel [J]. Acta Metall., 1970, 18: 147
doi: 10.1016/0001-6160(70)90078-7
|
11 |
Ghosh S, Kain V. Effect of surface machining and cold working on the ambient temperature chloride stress corrosion cracking susceptibility of AISI 304L stainless steel [J]. Mater. Sci. Eng. A, 2010, 527: 679
doi: 10.1016/j.msea.2009.08.039
|
12 |
Ghosh S, Rana V P S, Kain V, et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel [J]. Mater. Des., 2011, 32: 3823
doi: 10.1016/j.matdes.2011.03.012
|
13 |
Wasim M, Djukic M B. Hydrogen embrittlement of low carbon structural steel at macro-, micro- and nano-levels [J]. Int. J. Hydrog. Energy, 2020, 45: 2145
doi: 10.1016/j.ijhydene.2019.11.070
|
14 |
Li J X, Wang W, Zhou Y, et al. A review of research status of hydrogen embrittlement for automotive advanced high-strength steels [J]. Acta Metall. Sin., 2020, 56: 444
doi: 10.11900/0412.1961.2019.00427
|
|
李金许, 王 伟, 周 耀 等. 汽车用先进高强钢的氢脆研究进展 [J]. 金属学报, 2020, 56: 444
doi: 10.11900/0412.1961.2019.00427
|
15 |
Koyama M, Tasan C C, Akiyama E, et al. Hydrogen-assisted decohesion and localized plasticity in dual-phase steel [J]. Acta Mater., 2014, 70: 174
doi: 10.1016/j.actamat.2014.01.048
|
16 |
Djukic M B, Bakic G M, Zeravcic V S, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion [J]. Eng. Fract. Mech., 2019, 216: 106528
doi: 10.1016/j.engfracmech.2019.106528
|
17 |
Depover T, Verbeken K. The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-C-X alloys: An experimental proof of the HELP mechanism [J]. Int. J. Hydrog. Energy, 2018, 43: 3050
doi: 10.1016/j.ijhydene.2017.12.109
|
18 |
Pérez Escobar D, Miñambres C, Duprez L, et al. Internal and surface damage of multiphase steels and pure iron after electrochemical hydrogen charging [J]. Corrosion Sci., 2011, 53: 3166
doi: 10.1016/j.corsci.2011.05.060
|
19 |
Venezuela J, Zhou Q, Liu Q, et al. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels. [J]. Mater. Today Commun., 2018, 17: 1
|
20 |
Kan B, Yang Z X, Wang Z J, et al. Hydrogen redistribution under stress-induced diffusion and corresponding fracture behaviour of a structural steel [J]. Mater. Sci. Technol., 2017, 33: 1539
doi: 10.1080/02670836.2017.1325562
|
21 |
Wang G, Yan Y, Li J X. Microstructure effect on hydrogen-induced cracking in TM210 maraging steel [J]. Mater. Sci. Eng. A, 2013, 586: 142.
doi: 10.1016/j.msea.2013.07.097
|
22 |
Nagao A, Smith C D, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel [J]. Acta Mater., 2012, 60: 5182
doi: 10.1016/j.actamat.2012.06.040
|
23 |
McLellan R B, Xu Z R. Hydrogen-induced vacancies in the iron lattice [J]. Scr. Mater., 1997, 36: 1201
doi: 10.1016/S1359-6462(97)00015-8
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|