Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (10): 739-746    DOI: 10.11901/1005.3093.2021.243
ARTICLES Current Issue | Archive | Adv Search |
Effect of Stress Triaxiality on Hydrogen Embrittlement Susceptibility of Quenched Boron Steel B1500HS
ZHANG Botao1,2, LI Shuhui1,2(), LI Yongfeng1,2, HAN Guofeng1,2
1.State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
2.Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

ZHANG Botao, LI Shuhui, LI Yongfeng, HAN Guofeng. Effect of Stress Triaxiality on Hydrogen Embrittlement Susceptibility of Quenched Boron Steel B1500HS. Chinese Journal of Materials Research, 2022, 36(10): 739-746.

Download:  HTML  PDF(11671KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Hydrogen embrittlement (HE) susceptibility of the quenched boron steel B1500HS before and after being electrochemical hydrogen charging by applying different stresses, such as simple shear, uniaxial tensile and analogous plane strain, respectively was investigated via slow strain rate tensile test. Meanwhile, the stress-strain curves for both the H-free and H-charged steels were acquired and then the HE susceptibility of the test steels was calculated based on the equivalent plastic strain to reveal the effects of the stress state on the HE susceptibility of the quenched boron steel. Furthermore, the fracture features of the steels were characterized by SEM and EBSD to analyze the HE mechanism for the different applied stress. The results show that the HE mechanisms of the quenched boron steel by simple shear stress is substantial different to those by tensile stress, which indicated that the HE susceptibility during testing by simple shear stress is much lower than that by tensile stress.

Key words:  metallic material      quenched boron steel      hydrogen embrittlement      susceptibility      stress triaxiality     
Received:  15 April 2021     
ZTFLH:  TG 156.3  
Fund: National Natural Science Foundation of China(52005329);China Postdoctoral Science Foundation(2020M671120)
About author:  LI Shuhui, Tel: (021)34206784, E-mail: lishuhui@sjtu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.243     OR     https://www.cjmr.org/EN/Y2022/V36/I10/739

CMnBSiCrSPFe
0.211.260.0030.350.230.060.00597.88
Table 1  Chemical components of B1500HS steel (mass fraction, %)
Fig.1  Micrograph of the boron steel as received (a) and as quenched (b)
Fig.2  XRD diffraction pattern of the quenched boron steel
Fig.3  Dimension (length in mm) of the samples (a) Uniaxial tensile sample, (b) Notched sample and (c) Simple shear sample
Fig.4  Stress triaxiality of each tensile samples
Fig.5  Stree-strain curves of the H-free and H-charged samples (a) Uniaxial tensile sample and notched sample and (b) Simple shear sample
SampleEquivalent plastic strain
H-freeH-charged
Uniaxial tensile0.2250.018±0.005
Notched0.1670.022±0.002
Simple shear0.3960.203±0.005
Table 2  Limiting equivalent plastic strain of H-free and H-charged samples for three kinds of stress triaxiality
Fig.6  HE susceptibility of the quenched boron steel under different stress triaxiality
Fig.7  Fracture features of the simple shear sample (a) H-free sample,(b) and (c) are enlarged regions labelled as b and c in (a); (d) H-charged sample, (e) and (f) are enlarged regions labelled as e and f in (d)
Fig.8  Fracture features of the uniaxial tensile sample (a) H-free sample, (b) is enlarged region labelled as b in (a); (c) H-charged sample, (d) and (e) are enlarged regions labelled as d and e in (c)
Fig.9  Fracture features of the notched sample (a) H-free sample, (b) is enlarged region labelled as b in (a); (c) H-charged sample, (d) and (e) are enlarged regions labelled as d and e in (c)
Fig.10  EBSD result of each H-free or H-charged sample beneath the fracture surface
1 Li H, Zhao G, He L, et al. Research on the constitutive relationship of hot stamping boron steel B1500HS at high temperature [J]. J. Mech. Eng., 2012, 48: 21
李辉平, 赵国群, 贺连芳 等. 热冲压硼钢B1500HS高温本构方程的研究 [J]. 机械工程学报, 2012, 48: 21
2 McMahon C. Hydrogen-induced intergranular fracture of steels [J]. Eng. Fract. Mech., 2001, 68: 773
doi: 10.1016/S0013-7944(00)00124-7
3 Lynch S. Hydrogen embrittlement (HE) phenomena and mechanisms [J]. Corros. Rev., 2012, 30: 105
4 Yoo J, Jo M C, Kim D W, et al. Effects of Cu addition on resistance to hydrogen embrittlement in 1 GPa-grade duplex lightweight steels [J]. Acta Mater., 2020, 196: 370
doi: 10.1016/j.actamat.2020.06.051
5 Kumar D S, Vishwakarma M. Hydrogen embrittlement in different materials: A review [J]. Int. J. Hydrog. Energy, 2018, 43: 21603
doi: 10.1016/j.ijhydene.2018.09.201
6 Lee S J, Ronevich J A, Krauss G, et al. Hydrogen embrittlement of hardened low-carbon sheet steel [J]. ISIJ Int., 2010, 50: 294
doi: 10.2355/isijinternational.50.294
7 Chen Y, Xu Z M, Zhang X X, et al. Irreversible hydrogen embrittlement study of B1500HS high strength boron steel [J]. Mater. Des., 2021, 199:109404
doi: 10.1016/j.matdes.2020.109404
8 Wang M Q, Akiyama E, Tsuzaki K. Hydrogen degradation of a boron-bearing steel with 1050 and 1300MPa strength levels [J]. Scr. Mater., 2005, 52: 403
doi: 10.1016/j.scriptamat.2004.10.023
9 Sofronis P, McMeeking R M. Numerical analysis of hydrogen transport near a blunting crack tip [J]. J. Mech. Phys. Solids, 1989, 37: 317
doi: 10.1016/0022-5096(89)90002-1
10 Oriani R A. The diffusion and trapping of hydrogen in steel [J]. Acta Metall., 1970, 18: 147
doi: 10.1016/0001-6160(70)90078-7
11 Ghosh S, Kain V. Effect of surface machining and cold working on the ambient temperature chloride stress corrosion cracking susceptibility of AISI 304L stainless steel [J]. Mater. Sci. Eng. A, 2010, 527: 679
doi: 10.1016/j.msea.2009.08.039
12 Ghosh S, Rana V P S, Kain V, et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel [J]. Mater. Des., 2011, 32: 3823
doi: 10.1016/j.matdes.2011.03.012
13 Wasim M, Djukic M B. Hydrogen embrittlement of low carbon structural steel at macro-, micro- and nano-levels [J]. Int. J. Hydrog. Energy, 2020, 45: 2145
doi: 10.1016/j.ijhydene.2019.11.070
14 Li J X, Wang W, Zhou Y, et al. A review of research status of hydrogen embrittlement for automotive advanced high-strength steels [J]. Acta Metall. Sin., 2020, 56: 444
doi: 10.11900/0412.1961.2019.00427
李金许, 王 伟, 周 耀 等. 汽车用先进高强钢的氢脆研究进展 [J]. 金属学报, 2020, 56: 444
doi: 10.11900/0412.1961.2019.00427
15 Koyama M, Tasan C C, Akiyama E, et al. Hydrogen-assisted decohesion and localized plasticity in dual-phase steel [J]. Acta Mater., 2014, 70: 174
doi: 10.1016/j.actamat.2014.01.048
16 Djukic M B, Bakic G M, Zeravcic V S, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion [J]. Eng. Fract. Mech., 2019, 216: 106528
doi: 10.1016/j.engfracmech.2019.106528
17 Depover T, Verbeken K. The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-C-X alloys: An experimental proof of the HELP mechanism [J]. Int. J. Hydrog. Energy, 2018, 43: 3050
doi: 10.1016/j.ijhydene.2017.12.109
18 Pérez Escobar D, Miñambres C, Duprez L, et al. Internal and surface damage of multiphase steels and pure iron after electrochemical hydrogen charging [J]. Corrosion Sci., 2011, 53: 3166
doi: 10.1016/j.corsci.2011.05.060
19 Venezuela J, Zhou Q, Liu Q, et al. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels. [J]. Mater. Today Commun., 2018, 17: 1
20 Kan B, Yang Z X, Wang Z J, et al. Hydrogen redistribution under stress-induced diffusion and corresponding fracture behaviour of a structural steel [J]. Mater. Sci. Technol., 2017, 33: 1539
doi: 10.1080/02670836.2017.1325562
21 Wang G, Yan Y, Li J X. Microstructure effect on hydrogen-induced cracking in TM210 maraging steel [J]. Mater. Sci. Eng. A, 2013, 586: 142.
doi: 10.1016/j.msea.2013.07.097
22 Nagao A, Smith C D, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel [J]. Acta Mater., 2012, 60: 5182
doi: 10.1016/j.actamat.2012.06.040
23 McLellan R B, Xu Z R. Hydrogen-induced vacancies in the iron lattice [J]. Scr. Mater., 1997, 36: 1201
doi: 10.1016/S1359-6462(97)00015-8
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] LIU Tianfu, ZHANG Bin, ZHANG Junfeng, XU Qiang, SONG Zhuman, ZHANG Guangping. Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy[J]. 材料研究学报, 2023, 37(7): 511-522.
No Suggested Reading articles found!