|
|
Prediction and Evaluation of Very-high Cycle Fatigue Strength of Carburized Cr-Ni Gear Steel Based on Interior Failure Mechanism |
DENG Hailong1,2( ), LIU Bing1, GUO Yang1, KANG Heming1, LI Mingkai1, LI Yongping1 |
1.School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China 2.Key Laboratory of Inner Mongolia for Advanced Manufacturing Technology, Inner Mongolia University of Technology, Hohhot 010051, China |
|
Cite this article:
DENG Hailong, LIU Bing, GUO Yang, KANG Heming, LI Mingkai, LI Yongping. Prediction and Evaluation of Very-high Cycle Fatigue Strength of Carburized Cr-Ni Gear Steel Based on Interior Failure Mechanism. Chinese Journal of Materials Research, 2023, 37(1): 55-64.
|
Abstract To evaluate the fatigue properties of carburized Cr-Ni gear steel, very high cycle fatigue tests were carried out at room temperature by stress ratios of 0 and 0.3. The fatigue failure modes of carburized Cr-Ni gear steel can be differentiated into interior fatigue failure with fine granular area (FGA) and surface fatigue failure with surface smooth area (SSA). According to the observation results of sites of inclusions and fatigue fracture morphology of the tested steels, therewith the interior very high cycle fatigue failure mechanism is clarified. Based on the cumulative damage method and the dislocation energy method, two kinds of interior fatigue strength prediction models for carburized Cr-Ni gear steels were established by taking the formation mechanism of fine granular area and the evaluated maximum size of inclusions into consideration. Based on the relationships between the relative size of FGA and the stress intensity factor of inclusion and stress ratio, the two fatigue strength prediction models were further modified, and the lFGA-S-N curves for the maximum size of inclusions was given. The results show that the fatigue strength prediction model based on the cumulative damage method and the dislocation energy method can be used to evaluate the interior fatigue strength of carburized Cr-Ni gear steel by various stress ratios, however the prediction accuracy of the model based on the dislocation energy method is higher.
|
Received: 13 September 2021
|
|
Fund: the Natural Science Foundation of Inner Mongolia Autonomous Region(2022MS05014);the Natural Science Foundation of Inner Mongolia Autonomous Region(2021LHMS05009);the Higher Education Research Program of Inner Mongolia(NJZY21306);Basic Scientific Research Business Project of Universities Directly under Inner Mongolia Autonomous Region(JY20220233);the Scientific Research Program of Inner Mongolia University of Technology(ZY202005) |
1 |
Takahashi K, Osedo H, Suzuki T, et al. Fatigue strength improvement of an aluminum alloy with a crack-like surface defect using shot peening and cavitation peening [J]. Eng. Fract. Mech., 2018, 193: 151
doi: 10.1016/j.engfracmech.2018.02.013
|
2 |
Xiao N, Hui W J, Zhang Y J, et al. High cycle fatigue behavior of a low carbon alloy steel: the influence of vacuum carburizing treatment [J]. Eng. Fail. Anal., 2020, 109: 104215
doi: 10.1016/j.engfailanal.2019.104215
|
3 |
Zhang T Y, Wu J S, Jin L, et al. Enhancing the mechanical and anticorrosion properties of 316L stainless steel via a cathodic plasma electrolytic nitriding treatment with added PEG [J]. J. Mater. Sci. Technol., 2019, 35(11): 2630
doi: 10.1016/j.jmst.2019.07.031
|
4 |
Hou F, Li J K, Xie S X, et al. Very high cycle fatigue properties of CrMoW rotor steel at high-temperature [J]. Chin. J. Mater. Res., 2016, 30(7): 481
doi: 10.11901/1005.3093.2015.322
|
|
侯 方, 李久楷, 谢少雄 等. CrMoW转子钢的高温超高周疲劳性能 [J]. 材料研究学报, 2016, 30(7): 481
|
5 |
Li C, Li W, Cai L, et al. Microstructure based cracking behavior and life assessment of titanium alloy under very-high-cycle fatigue with elevated temperatures [J]. Int. J. Fatigue, 2022, 161: 106914
doi: 10.1016/j.ijfatigue.2022.106914
|
6 |
Han S W, Yang X G, Shi D Q, et al. Microstructure-sensitive modeling of competing failure mode between surface and internal nucleation in high cycle fatigue [J]. Int. J. Plasticity, 2020, 126: 102622
doi: 10.1016/j.ijplas.2019.11.001
|
7 |
Kong W W, Yuan C, Zhang B N. Investigations on cyclic deformation behaviors and corresponding failure modes of a Ni-Based superalloy [J]. Mater. Sci. Eng., 2020, 791A: 139775
|
8 |
Lei L, Liang Y L, Jiang Y, et al. Effect of quench rate on the high cycle fatigue property of 60Si2CrVAT spring steels [J]. Chin. J. Mater. Res., 2017, 31(1): 65
|
|
雷 磊, 梁益龙, 姜 云 等. 淬火冷却速率对60Si2CrVAT弹簧钢高周疲劳性能的影响 [J]. 材料研究学报, 2017, 31(1): 65
|
9 |
Huang Y Q, Wang D, Lu Y Z, et al. Fatigue crack initiation behavior at intermediate temperature under high stress amplitude for single crystal superalloy DD413 [J]. Chin. J. Mater. Res., 2021, 35(7): 510
doi: 10.11901/1005.3093.2020.274
|
|
黄亚奇, 王 栋, 卢玉章 等. 第一代单晶高温合金中温高应力幅下的疲劳裂纹萌生行为 [J]. 材料研究学报, 2021, 35(7): 510
doi: 10.11901/1005.3093.2020.274
|
10 |
Murakami Y, Yokoyama N N, Nagata J. Mechanism of fatigue failure in ultralong life regime [J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25(8-9): 735
doi: 10.1046/j.1460-2695.2002.00576.x
|
11 |
Shiozawa K, Morii Y, Nishino S, et al. Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime [J]. Int. J. Fat., 2006, 28(11): 1521
doi: 10.1016/j.ijfatigue.2005.08.015
|
12 |
Sakai T, Oguma N, Morikawa A. Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior crack initiation site for a bearing steel in very high-cycle fatigue [J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38(11): 1305
doi: 10.1111/ffe.12344
|
13 |
Hong Y S, Lei Z Q, Sun C Q, et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels [J]. Int. J. Fatigue, 2014, 58: 144
doi: 10.1016/j.ijfatigue.2013.02.023
|
14 |
Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength [J]. Int. J. Fatigue, 1994, 16(3): 163
doi: 10.1016/0142-1123(94)90001-9
|
15 |
Wang Q Y, Berard J Y, Dubarre A, et al. Gigacycle fatigue of ferrous alloys [J]. Fatigue Fract. Eng. Mater. Struct., 1999, 22(8): 667
doi: 10.1046/j.1460-2695.1999.t01-1-00185.x
|
16 |
Ding M C, Zhang Y L, Xian H W, et al. Fatigue strength prediction based on micro scratches [J]. J. Northeastern Univ. (Nat. Sci.), 2020, 41(5): 693
|
|
丁明超, 张元良, 咸宏伟 等. 基于微观划痕的疲劳强度预测 [J]. 东北大学学报(自然科学版), 2020, 41(5): 693
|
17 |
Choi B H, Song S H. Prediction of fatigue limit of induction surface hardened 1.05Cr–0.23Mo steel alloy using extreme value statistics [J]. J. Mater. Sci., 2005, 40(20): 5427
doi: 10.1007/s10853-005-2800-3
|
18 |
Sun Z D, Hou D B, Li Z Y. Prediction for fatigue strength and distribution features of inclusion of carburized Cr-Mn steel [J]. Ordnance Mater. Sci. Eng., 2021, 44(1): 98
|
|
孙振铎, 侯东勃, 李志远. 渗碳Cr-Mn钢的夹杂分布特性及疲劳强度预测 [J]. 兵器材料科学与工程, 2021, 44(1): 98
|
19 |
Deng H L, Liu H, Liu Q C, et al. Fatigue strength prediction of carburized 12Cr steel alloy: effects of evaluation of maximum crack sizes and residual stress distribution [J]. Fatigue Fract. Eng. Mater. Struct., 2020, 43(2): 342
doi: 10.1111/ffe.13149
|
20 |
Li Y D, Zhang L L, Zhang C, et al. Ultra-long life fatigue behavior of SUJ2 bearing steel [J]. J. Mater. Eng., 2016, 44(8): 85
|
|
李永德, 张莉莉, 张 冲 等. SUJ2轴承钢超长寿命疲劳行为研究 [J]. 材料工程, 2016, 44(8): 85
|
21 |
Deng H L, Liu B, Guo Y, et al. Effect of local equivalent stress on fatigue life prediction of carburized Cr-Ni alloy steel based on evaluation of maximum crack sizes [J]. Eng. Fract. Mech., 2021, 248: 107718
doi: 10.1016/j.engfracmech.2021.107718
|
22 |
Liu Z Y, Liu Y J, Liu P, et al. Effects of grain size on fatigue properties of K492 superalloy [J]. Chin. J. Mater. Res., 2018, 32(11): 834
|
|
刘志远, 刘勇军, 刘 鹏 等. 晶粒度对K492高温合金疲劳性能的影响 [J]. 材料研究学报, 2018, 32(11): 834
|
23 |
Gao N, Li W, Sun R, et al. A fatigue assessment approach involving small crack growth modelling for structural alloy steels with interior fracture behavior [J]. Eng. Fract. Mech., 2018, 204: 198
doi: 10.1016/j.engfracmech.2018.10.018
|
24 |
Sakai T. Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use [J]. J. Solid Mech. Mater. Eng., 2009, 3(3): 425
doi: 10.1299/jmmp.3.425
|
25 |
Tanaka K, Mura T. A theory of fatigue crack initiation at inclusions [J]. Metall. Trans., 1982, 13A(1) : 117
|
26 |
Chan K S. A microstructure-based fatigue-crack-initiation model [J]. Metall. Mater. Trans., 2003, 34A: 43
|
27 |
Cheng A S, Laird C. A quick and simple method for orienting cubic single crystals from Laue back-reflection photographs [J]. J. Appl. Cryst., 1982, 15: 137
doi: 10.1107/S0021889882011601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|