Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (1): 47-54    DOI: 10.11901/1005.3093.2021.634
ARTICLES Current Issue | Archive | Adv Search |
Precipitation of Second Phase in Non-oriented Silicon Steel
XU Yang1, LI Yanrui1, LIU Baosheng1(), LIU Wen1, ZHANG Shaohua1, WEI Yinghui1,2
1.College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
Cite this article: 

XU Yang, LI Yanrui, LIU Baosheng, LIU Wen, ZHANG Shaohua, WEI Yinghui. Precipitation of Second Phase in Non-oriented Silicon Steel. Chinese Journal of Materials Research, 2023, 37(1): 47-54.

Download:  HTML  PDF(6715KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The precipitation behavior of second phase in non-oriented silicon steel during normalization treatment at 900~1000℃ was investigated by means of scanning electron microscope (SEM) observation and energy dispersive spectrometer (EDS), and thermodynamic and kinetic calculations. The result show that the second phases in non-oriented silicon steel are mainly AlN with a small amount of MnS. The critical nucleation radius (d*) of AlN and MnS particles increases with the increase of precipitation temperature for different matrix phases, namely α-phase, γ-phase and (α+γ) two-phase respectively, which accord with three different precipitation nucleation mechanisms i.e. uniform nucleation, grain boundary nucleation and dislocation nucleation. By taking the second phase nucleation behavior at the same temperature as comparison, among others the critical nucleation work of grain boundary nucleation of AlN is the smallest, the relative nucleation rate is the largest, so grain boundary nucleation is easy to occur in (α+γ) two-phase area. Besides, the critical nucleation radius of MnS on the dislocation line is the smallest, the relative nucleation rate is large, and the initial precipitation temperature is low, therefore, the dislocation nucleation is dominated for MnS precipitates in the α-phase matrix.

Key words:  metallic materials      non-oriented silicon steel      second phase      heat treatment      thermodynamics      dynamics     
Received:  11 November 2021     
ZTFLH:  TG142.7  
Fund: Major Science and Technology Projects in Shanxi Province(20191102004);Key R & D Plan Projects in Shanxi Province(202003D111001);Key R & D Plan Projects in Shanxi Province(201903D111008)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.634     OR     https://www.cjmr.org/EN/Y2023/V37/I1/47

CSiMnSAlTiN
0.0022.05020.26980.0020.2580.00150.0018
Table 1  Chemical composition of non oriented silicon steel (mass fraction, %)
PrecipitationAlNMnS
Kw[Al]w[N]w[Mn]w[S]

Solid solubility

in (α+γ) phase lg K

2.72-10062 / T2.929-14885 / T

Solid solubility

in α phase lg K

1.69-8296 / T[5]4.092-10590 / T[5]

Solid solubility

in γ phase lg K

1.95-7400 / T[5]2.929-9220 / T[5]
Table 2  Equilibrium solid solubility product formula of AlN and MnS in different phases
Fig.1  Morphology of inhibitor particles in normalized plate and EDS energy spectrum analysis (a) Single AlN particles into the grain, (b) Single AlN particles at grain boundaries, (c) Superimposed lamellar AlN, (d) AlN-MnS composite precipitates, (e) EDS of AlN particles, (f) EDS of AlN-MnS particles
Fig.2  Fe-Si binary phase diagram and temperature control
Fig.3  Equilibrium precipitation amount of the AlN and MnS particles in different matrix phases

Precipitation

temperature/℃

Precipitation maximum amount/%, mass fraction

Precipitation equilibrium

amount/%, mass fraction

AlN(α+γ)13896.20×10-36.06×10-3 (97.75%)
AlN(α)13806.13×10-35.84×10-3 (95.32%)
AlN(γ)11285.11×10-33.07×10-3 (60.19%)
MnS(α+γ)21266.85×10-36.85×10-3 (99.89%)
MnS(α)11666.56×10-35.41×10-3 (80.55%)
MnS(γ)12206.55×10-35.66×10-3 (86.38%)
Table 3  Equilibrium precipitation amount of the AlN and MnS at different normalization temperatures
Fig.4  Critical nucleation size (d*) of the AlN (a) and MnS (b) under different nucleation mechanisms
Fig.5  Critical nucleation energy of AlN and MnS, under different nucleation mechanisms (a) (ΔG*), (b) enlarged area of the red box, (c) (ΔG*), (d) is the enlarged area of the red box
Fig.6  Relative nucleation rate of the AlN (a) and relative nucleation rate of the MnS (b) under different nucleation mechanisms
Fig.7  PTT curve of AlN (a) and PTT curve of MnS (b) under different nucleation mechanisms

Phase

region

Fastest precipitation temperature / ℃

Homogeneous

nucleation

Grain boundary

nucleation

Dislocation

nucleation

AlNMnSAlNMnSAlNMnS
(α+γ)803116096011569241173
α782958926983761960
γ722683685659645709
Table 4  Fastest precipitation temperatures of AlN and MnS with three different nucleation mechanisms
1 Zhang Z Y, Mao W M, Gao Z Yet al. Effect of process parameters on recrystallization texture of cold rolled non oriented silicon steel [J]. J. Mater. Heat Treat., 2010, 31(6): 102
张智义, 毛卫民, 高振宇 等. 工艺参数对冷轧无取向硅钢再结晶织构的影响 [J]. 材料热处理学报, 2010, 31(6): 102
2 He Z Z, Zhao Y, Luo H W. Electrical Steel [M]. Beijing: Metallurgical Industry Press, 2012
何忠治, 赵 宇, 罗海文. 电工钢 [M]. 北京: 冶金工业出版社, 2012
3 Miao L D, Zhang Y, Zhang F, et al. Qualitative and quantitative analysis of inclusions in different grades of non oriented silicon steel [J]. Metall. Anal., 2012, 32(10): 7
缪乐德, 张 毅, 张 峰 等. 不同牌号无取向硅钢夹杂物定性定量分析 [J]. 冶金分析, 2012, 32(10): 7
4 Lv X J, Zhang F, Wang B, et al. Effect of inclusions on magnetic properties of non oriented silicon steel [J]. Spe. teel, 2012, 33 (4): 22
吕学钧, 张 峰, 王 波 等. 夹杂物对无取向硅钢磁性能的影响[J]. 特殊钢, 2012, 33(4): 22
5 Yong Q L. Secondary Phases in Steel [M]. Beijing: Metallurgical Industry Press, 2006
雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006
6 Sennour M, Esnouf C. Contribution of advanced microscopy techniques to nano-precipitates characterization: case of AlN precipitation in low-carbon steel [J]. Acta Mater., 2003, 51(4): 943
doi: 10.1016/S1359-6454(02)00498-6
7 Okenko A P, Ivanenkov M I, Kulkova M N. Fine precipitates in the grain boundaries of transformer steel [J]. Met. Sci. Heat Treat., 1971, 13(5): 376
doi: 10.1007/BF00652439
8 Nakayama T, Takahashi M. Effects of vanadium on magnetic properties of semi-processed non-oriented electrical steel sheets [J]. J. Mater. Sci., 1995, 30(23): 5979
doi: 10.1007/BF01151515
9 Taisei, Nakayama T, Takahashi M, et al. Effects of titanium on magnetic properties of semi-processed non-oriented electrical steel sheets [J]. J. Mater. Sci., 1997, 32(4): 1055
doi: 10.1023/A:1018590725223
10 Hou C K, Hu C T, Lee S. The effect of titanium and niobium on degradation of magnetic properties of lamination steels [J]. J. Magn. Magn. Mater., 1990, 87(1/2): 44
doi: 10.1016/0304-8853(90)90192-S
11 Oh J H, Cho S H, Jonas J J. AlN precipitation in dual-phase 3% electrical steel [J]. ISIJ Inter., 2001, 41: 484
doi: 10.2355/isijinternational.41.484
12 Iwayama K, Haratani T. The dissolution and precipitation behavior of AlN and MnS in grain-oriented 3% silicon-steel with high permeability [J]. J. Magn. Magn. Mater., 1980, 19: 15
doi: 10.1016/0304-8853(80)90540-5
13 Yan J X, Fu B, Xiang L, Thermodynamics of AlN and MnS precipitation during continuous casting and soaking of low temperature and high magnetic induction oriented silicon steel [J]. J. Iron Steel Res., 2014, 26(10): 35
颜建新, 付 兵, 项 利. 低温高磁感取向硅钢连铸与均热过程AlN与MnS析出的热力学 [J]. 钢铁研究学报, 2014, 26(10): 35
14 Liu G P, Ling C, Fan L F, Kinetics of AlN precipitation in oriented silicon steel [J]. J. Iron Steel Res., 2014. 26(12): 60
刘国平, 凌 晨, 樊立峰. 取向硅钢中AlN析出的动力学 [J]. 钢铁研究学报, 2014. 26(12): 60
15 Liu L, Qiao J L, Yin S B. Kinetic calculation of AlN precipitation in austenite of oriented silicon steel [J]. Steel Vanadium Titanium, 2020, 41(2): 158
刘 磊, 乔家龙, 尹思博. 取向硅钢γ相中AlN沉淀析出的动力学计算 [J]. 钢铁钛钒, 2020, 41(2): 158
16 Meng L, Ji J J, He C X, et al. Kinetics calculation and analysis of MnS particles nucleation precipitation in grain-oriented silicon steel [J]. Heat Treat.Metals., 2015, 40(3):11
孟 利, 汲家骏, 何承绪 等. 取向硅钢中MnS粒子形核析出的动力学计算与分析 [J]. 金属热处理, 2015, 40(3): 11
17 Xiang L, Yue E B, Fan D D, et al. Calculation of AlN and MnS precipitation in Non-oriented electrical steel produced by CSP process [J]. J. Iron Steel Res (Inter)., 2008, 15: 88
18 Akamatsu S, Senuma T, Hasebe M, Generalized Nb(C, N) precipitation model applicable to extra low carbon steel [J]. ISIJ Inter., 1992, 32: 275
doi: 10.2355/isijinternational.32.275
19 Wang H J, Fu B, Xiang L, et al. Nucleation mechanism of precipitate of AlN in ferrite phase of Hi-B steel [J]. J. Iron Steel Res., 2015, 27(10): 40
王海军, 付 兵, 项 利 等. AlN 在Hi-B钢铁素体相中析出的形核机制 [J]. 钢铁研究学报, 2015, 27(10): 40
20 Zhang K, Sun X J, Zhang M Y, et al. Kinetics of (Ti, V, Mo) C precipitated in γ/α matrix of Ti-V-Mo complex microalloyed steel [M]. Acta. Metall. Sin., 2018, (8): 1122
张 可, 孙新军, 张明亚 等. Ti-V-Mo复合微合金钢中(Ti, V, Mo) C在γ/α中沉淀析出析出的动力学 [M]. 冶金学报, 2018, (8): 1122
21 Chen Y L, Wang Y, Zhao A M. Precipitation of AlN and MnS in low carbon aluminium-killed steel [J]. J. Iron Steel Res(Inter)., 2012, (4): 54
22 An Z G, Mao W M. Precipitation nucleation behaviors of MnS particles in a grain-oriented electrical steel [J]. Trans. Mater. Heat Treat., 2010, 31(2): 45
安治国, 毛卫民. 取向电工钢中MnS粒子析出形核行为 [J]. 材料与热处理学报, 2010, 31(2): 45
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!