Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (1): 55-64    DOI: 10.11901/1005.3093.2021.528
ARTICLES Current Issue | Archive | Adv Search |
Prediction and Evaluation of Very-high Cycle Fatigue Strength of Carburized Cr-Ni Gear Steel Based on Interior Failure Mechanism
DENG Hailong1,2(), LIU Bing1, GUO Yang1, KANG Heming1, LI Mingkai1, LI Yongping1
1.School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2.Key Laboratory of Inner Mongolia for Advanced Manufacturing Technology, Inner Mongolia University of Technology, Hohhot 010051, China
Cite this article: 

DENG Hailong, LIU Bing, GUO Yang, KANG Heming, LI Mingkai, LI Yongping. Prediction and Evaluation of Very-high Cycle Fatigue Strength of Carburized Cr-Ni Gear Steel Based on Interior Failure Mechanism. Chinese Journal of Materials Research, 2023, 37(1): 55-64.

Download:  HTML  PDF(4124KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To evaluate the fatigue properties of carburized Cr-Ni gear steel, very high cycle fatigue tests were carried out at room temperature by stress ratios of 0 and 0.3. The fatigue failure modes of carburized Cr-Ni gear steel can be differentiated into interior fatigue failure with fine granular area (FGA) and surface fatigue failure with surface smooth area (SSA). According to the observation results of sites of inclusions and fatigue fracture morphology of the tested steels, therewith the interior very high cycle fatigue failure mechanism is clarified. Based on the cumulative damage method and the dislocation energy method, two kinds of interior fatigue strength prediction models for carburized Cr-Ni gear steels were established by taking the formation mechanism of fine granular area and the evaluated maximum size of inclusions into consideration. Based on the relationships between the relative size of FGA and the stress intensity factor of inclusion and stress ratio, the two fatigue strength prediction models were further modified, and the lFGA-S-N curves for the maximum size of inclusions was given. The results show that the fatigue strength prediction model based on the cumulative damage method and the dislocation energy method can be used to evaluate the interior fatigue strength of carburized Cr-Ni gear steel by various stress ratios, however the prediction accuracy of the model based on the dislocation energy method is higher.

Key words:  metallic materials      FGA size evaluation      failure mechanism      cumulative damage      dislocation energy method      fatigue strength predictio     
Received:  13 September 2021     
ZTFLH:  TG111.8  
Fund: the Natural Science Foundation of Inner Mongolia Autonomous Region(2022MS05014);the Natural Science Foundation of Inner Mongolia Autonomous Region(2021LHMS05009);the Higher Education Research Program of Inner Mongolia(NJZY21306);Basic Scientific Research Business Project of Universities Directly under Inner Mongolia Autonomous Region(JY20220233);the Scientific Research Program of Inner Mongolia University of Technology(ZY202005)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.528     OR     https://www.cjmr.org/EN/Y2023/V37/I1/55

CSiMnSPCrNiFe
0.160.370.60.0350.0351.653.65Bal.
Table 1  Chemical composition of gear steel (mass fraction, %)
Fig.1  Microstructure of carburized Cr-Ni gear steel (a) carburized, (b) base
Fig.2  Relationship between micro-hardness and residual stress and depth
Fig.3  S-N curves of carburized Cr-Ni gear steel for stress ratios of 0 and 0.3
Fig.4  Observation of typical fracture surfaces (a) fisheye (σa = 575 MPa, Nf = 4254700 cycles, R = 0), (b) inclusion with FGA (σa = 575 MPa, Nf = 4254700 cycles, R = 0); (c) surface failure (σa = 650 MPa, Nf = 82100 cycles, R = 0), (d) inclusion (σa = 650 MPa, Nf = 82100 cycles, R = 0); (e) fisheye (σa = 455 MPa, Nf = 9494900 cycles, R = 0.3), (f) inclusion with FGA (σa = 455 MPa, Nf = 9494900 cycles, R = 0.3)
Fig.5  Depth of inclusion from surface
Fig.6  Relationships between crack sizesand σa
Fig.7  Relationship between RFGA/Rinc and 1/ΔKinc2
Fig.8  Interior failure mechanism
Fig.9  Relationship between σb/(σmax+σr)+lg(lg(RFGA/Rinc)) and lgNf
Fig.10  Established lFGA-S-N curves by using GPD function; (a) cumulative damage method; (b) dislocation energy method
Stress ratioExperimental strength/MPaPrediction strength (Model I)/MPaErrorPrediction strength (Model II)/MPaError
R = 0500458.540.08501.660.00
R = 0525475.270.09512.760.02
R = 0550484.620.12522.970.05
R = 0550482.060.12526.900.04
R = 0575525.700.09537.190.07
R = 0600502.770.16553.930.08
R = 0575507.940.12565.130.02
R = 0625542.830.13571.080.09
R = 0.3455400.790.12428.820.06
R = 0.3437.5396.790.09412.520.06
Table 2  Estimation of fatigue strength at the maximum inclusion size under GPD function
1 Takahashi K, Osedo H, Suzuki T, et al. Fatigue strength improvement of an aluminum alloy with a crack-like surface defect using shot peening and cavitation peening [J]. Eng. Fract. Mech., 2018, 193: 151
doi: 10.1016/j.engfracmech.2018.02.013
2 Xiao N, Hui W J, Zhang Y J, et al. High cycle fatigue behavior of a low carbon alloy steel: the influence of vacuum carburizing treatment [J]. Eng. Fail. Anal., 2020, 109: 104215
doi: 10.1016/j.engfailanal.2019.104215
3 Zhang T Y, Wu J S, Jin L, et al. Enhancing the mechanical and anticorrosion properties of 316L stainless steel via a cathodic plasma electrolytic nitriding treatment with added PEG [J]. J. Mater. Sci. Technol., 2019, 35(11): 2630
doi: 10.1016/j.jmst.2019.07.031
4 Hou F, Li J K, Xie S X, et al. Very high cycle fatigue properties of CrMoW rotor steel at high-temperature [J]. Chin. J. Mater. Res., 2016, 30(7): 481
doi: 10.11901/1005.3093.2015.322
侯 方, 李久楷, 谢少雄 等. CrMoW转子钢的高温超高周疲劳性能 [J]. 材料研究学报, 2016, 30(7): 481
5 Li C, Li W, Cai L, et al. Microstructure based cracking behavior and life assessment of titanium alloy under very-high-cycle fatigue with elevated temperatures [J]. Int. J. Fatigue, 2022, 161: 106914
doi: 10.1016/j.ijfatigue.2022.106914
6 Han S W, Yang X G, Shi D Q, et al. Microstructure-sensitive modeling of competing failure mode between surface and internal nucleation in high cycle fatigue [J]. Int. J. Plasticity, 2020, 126: 102622
doi: 10.1016/j.ijplas.2019.11.001
7 Kong W W, Yuan C, Zhang B N. Investigations on cyclic deformation behaviors and corresponding failure modes of a Ni-Based superalloy [J]. Mater. Sci. Eng., 2020, 791A: 139775
8 Lei L, Liang Y L, Jiang Y, et al. Effect of quench rate on the high cycle fatigue property of 60Si2CrVAT spring steels [J]. Chin. J. Mater. Res., 2017, 31(1): 65
雷 磊, 梁益龙, 姜 云 等. 淬火冷却速率对60Si2CrVAT弹簧钢高周疲劳性能的影响 [J]. 材料研究学报, 2017, 31(1): 65
9 Huang Y Q, Wang D, Lu Y Z, et al. Fatigue crack initiation behavior at intermediate temperature under high stress amplitude for single crystal superalloy DD413 [J]. Chin. J. Mater. Res., 2021, 35(7): 510
doi: 10.11901/1005.3093.2020.274
黄亚奇, 王 栋, 卢玉章 等. 第一代单晶高温合金中温高应力幅下的疲劳裂纹萌生行为 [J]. 材料研究学报, 2021, 35(7): 510
doi: 10.11901/1005.3093.2020.274
10 Murakami Y, Yokoyama N N, Nagata J. Mechanism of fatigue failure in ultralong life regime [J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25(8-9): 735
doi: 10.1046/j.1460-2695.2002.00576.x
11 Shiozawa K, Morii Y, Nishino S, et al. Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime [J]. Int. J. Fat., 2006, 28(11): 1521
doi: 10.1016/j.ijfatigue.2005.08.015
12 Sakai T, Oguma N, Morikawa A. Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior crack initiation site for a bearing steel in very high-cycle fatigue [J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38(11): 1305
doi: 10.1111/ffe.12344
13 Hong Y S, Lei Z Q, Sun C Q, et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels [J]. Int. J. Fatigue, 2014, 58: 144
doi: 10.1016/j.ijfatigue.2013.02.023
14 Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength [J]. Int. J. Fatigue, 1994, 16(3): 163
doi: 10.1016/0142-1123(94)90001-9
15 Wang Q Y, Berard J Y, Dubarre A, et al. Gigacycle fatigue of ferrous alloys [J]. Fatigue Fract. Eng. Mater. Struct., 1999, 22(8): 667
doi: 10.1046/j.1460-2695.1999.t01-1-00185.x
16 Ding M C, Zhang Y L, Xian H W, et al. Fatigue strength prediction based on micro scratches [J]. J. Northeastern Univ. (Nat. Sci.), 2020, 41(5): 693
丁明超, 张元良, 咸宏伟 等. 基于微观划痕的疲劳强度预测 [J]. 东北大学学报(自然科学版), 2020, 41(5): 693
17 Choi B H, Song S H. Prediction of fatigue limit of induction surface hardened 1.05Cr–0.23Mo steel alloy using extreme value statistics [J]. J. Mater. Sci., 2005, 40(20): 5427
doi: 10.1007/s10853-005-2800-3
18 Sun Z D, Hou D B, Li Z Y. Prediction for fatigue strength and distribution features of inclusion of carburized Cr-Mn steel [J]. Ordnance Mater. Sci. Eng., 2021, 44(1): 98
孙振铎, 侯东勃, 李志远. 渗碳Cr-Mn钢的夹杂分布特性及疲劳强度预测 [J]. 兵器材料科学与工程, 2021, 44(1): 98
19 Deng H L, Liu H, Liu Q C, et al. Fatigue strength prediction of carburized 12Cr steel alloy: effects of evaluation of maximum crack sizes and residual stress distribution [J]. Fatigue Fract. Eng. Mater. Struct., 2020, 43(2): 342
doi: 10.1111/ffe.13149
20 Li Y D, Zhang L L, Zhang C, et al. Ultra-long life fatigue behavior of SUJ2 bearing steel [J]. J. Mater. Eng., 2016, 44(8): 85
李永德, 张莉莉, 张 冲 等. SUJ2轴承钢超长寿命疲劳行为研究 [J]. 材料工程, 2016, 44(8): 85
21 Deng H L, Liu B, Guo Y, et al. Effect of local equivalent stress on fatigue life prediction of carburized Cr-Ni alloy steel based on evaluation of maximum crack sizes [J]. Eng. Fract. Mech., 2021, 248: 107718
doi: 10.1016/j.engfracmech.2021.107718
22 Liu Z Y, Liu Y J, Liu P, et al. Effects of grain size on fatigue properties of K492 superalloy [J]. Chin. J. Mater. Res., 2018, 32(11): 834
刘志远, 刘勇军, 刘 鹏 等. 晶粒度对K492高温合金疲劳性能的影响 [J]. 材料研究学报, 2018, 32(11): 834
23 Gao N, Li W, Sun R, et al. A fatigue assessment approach involving small crack growth modelling for structural alloy steels with interior fracture behavior [J]. Eng. Fract. Mech., 2018, 204: 198
doi: 10.1016/j.engfracmech.2018.10.018
24 Sakai T. Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use [J]. J. Solid Mech. Mater. Eng., 2009, 3(3): 425
doi: 10.1299/jmmp.3.425
25 Tanaka K, Mura T. A theory of fatigue crack initiation at inclusions [J]. Metall. Trans., 1982, 13A(1) : 117
26 Chan K S. A microstructure-based fatigue-crack-initiation model [J]. Metall. Mater. Trans., 2003, 34A: 43
27 Cheng A S, Laird C. A quick and simple method for orienting cubic single crystals from Laue back-reflection photographs [J]. J. Appl. Cryst., 1982, 15: 137
doi: 10.1107/S0021889882011601
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!