Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (9): 699-705    DOI: 10.11901/1005.3093.2021.200
ARTICLES Current Issue | Archive | Adv Search |
High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy
SHAN Weiyao1,2, WANG Yongli1(), LI Jing1, XIONG Liangyin1, DU Xiaoming3, LIU Shi1
1.Special Alloy Research Department, Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
Cite this article: 

SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy. Chinese Journal of Materials Research, 2022, 36(9): 699-705.

Download:  HTML  PDF(9141KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Coatings of Cr and CrAl (14% Al, mass fraction) were prepared on Zr-4 alloy substrate by magnetron sputtering method. The oxidation resistance of Cr and CrAl coatings in high temperature steam (simulated the situation of LOCA accident) was investigated by means of steam oxidation test at 1200℃ for 1 h, scanning electron microscope (SEM), energy dispersive spectroscope (EDS) and X-ray diffractometer (XRD). The results show that the thickness of oxide scaled formed on the uncoated Zr-4 alloy is about 100 μm after steam oxidation at 1200℃/1 h, while a dense Cr2O3 scale of about 4 μm in thickness formed on the Cr coating surface, and the oxidation rate decreases significantly. The oxidation rate of CrAl coating is even lower than that of Cr coating due to the formation of a dense scale of mixed oxides Cr2O3 and Al2O3 of about 0.8 μm in thickness. It can be concluded that Cr and CrAl coatings prepared by magnetron sputtering on Zr-4 alloy have good resistance to high temperature steam oxidation at 1200℃. The thickness of the oxide scale formed on the surface of Cr coating is about 1/25 of that on Zr-4 alloy, and the thickness of the oxide scale on the surface of CrAl coating is less than 1/100 of that on Zr-4 alloy.

Key words:  surface and interface in the materials      accident tolerant fuel      magnetron sputtering      Cr coating      CrAl coating      high temperature steam oxidation resistance     
Received:  24 March 2021     
ZTFLH:  TG174.2+1  
Fund: Shenyang Science and Technology Project(Y17-0-022)
About author:  WANG Yongli, Tel: 15909820506, E-mail: wangyongli@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.200     OR     https://www.cjmr.org/EN/Y2022/V36/I9/699

CompositionSnFeCrZr
Content1.50.20.1Bal.
Table 1  Composition of Zr-4 alloy matrix (mass fraction, %)
Fig.1  Surface (a, b, d, e) and cross-section (c, f) morphologies of Cr layers prepared at different substrate temperatures (a) room temperature; (b) 350℃; (c) 350℃; (d, e) 400℃; (f) 400℃
Fig.2  XRD spectrum of Cr coating
Fig.3  SEM images of CrAl coating morphology at different substrate temperatures (a) room temperature, surface; (b, c) 400℃, surface; (d) 450℃, surface; (e) 400℃, cross-section; (f) 450℃, cross-section
Fig.4  XRD spectrum of CrAl coating
Fig.5  Composition of CrAl film prepared by magnetron sputtering
Fig.6  Surface (a, b, c) and cross section (d~h) morphology of Cr and CrAl coatings after steam oxidation at 1200℃ for 1 h (a, d) Cr coatings, 400℃; (b, e, h) CrAl coatings, 400℃; (c, f) CrAl coatings, 450℃; (g) Zr alloy
Fig.7  XRD spectra of Cr (a) and CrAl (b) coatings after steam oxidation at 1200℃ for 1 h
1 Kim H G, Kim I H, Jung Y I, et al. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating [J]. J. Nucl. Mater., 2015, 465: 531
doi: 10.1016/j.jnucmat.2015.06.030
2 Hallstadius L, Johnson S, Lahoda E. Cladding for high performance fuel [J]. Prog. Nucl. Energy, 2012, 57: 71
doi: 10.1016/j.pnucene.2011.10.008
3 Ott L J, Robb K R, Wang D. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions [J]. J. Nucl. Mater., 2014, 448: 520
doi: 10.1016/j.jnucmat.2013.09.052
4 Ševeček M, Gurgen A, Phillips B, et al. Cold spray Cr-coated fuel cladding with enhanced accident tolerance [A]. 2017 Water Reactor Fuel Performance Meeting [C]. Jeju Island, Korea: WRFPM, 2017
5 Park J H, Kim H G, Park J Y, et al. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings [J]. Surf. Coat. Technol., 2015, 280: 256
doi: 10.1016/j.surfcoat.2015.09.022
6 Brachet J C, Saux M L, Flem M L, et al. On-going studies at CEA on chromium coated zirconium based nuclear fuel claddings for enhanced accident tolerant LWRs fuel [A]. TopFuel 2015 [C]. Zurich, Switzerland, 2015
7 Ribis J, Wu A, Brachet J C, et al. Atomic-scale interface structure of a Cr-coated Zircaloy-4 material [J]. J. Mater. Sci., 2018, 53: 9879
doi: 10.1007/s10853-018-2333-1
8 Bischoff J, Delafoy C, Vauglin C, et al. AREVA NP's enhanced accident-tolerant fuel developments: Focus on Cr-coated M5 cladding [J]. Nucl. Eng. Technol., 2018, 50: 223
doi: 10.1016/j.net.2017.12.004
9 Wagih M, Spencer B, Hales J, et al. Fuel performance of chromium-coated zirconium alloy and silicon carbide accident tolerant fuel claddings [J]. Ann. Nucl. Energy, 2018, 120: 304
doi: 10.1016/j.anucene.2018.06.001
10 Zhong W C, Mouche P A, Heuser B J. Response of Cr and Cr-Al coatings on Zircaloy-2 to high temperature steam [J]. J. Nucl. Mater., 2018, 498: 137
doi: 10.1016/j.jnucmat.2017.10.021
11 Idarraga-Trujillo I, Flem M L, Brachet J C, et al. Assessment at CEA of coated nuclear fuel cladding for LWRs with increasing margins in LOCA and beyond LOCA conditions [A]. TopFuel 2013 [C]. Charlotte, NC, USA, 2013
12 Wu Y W, He X J, Zhang J L, et al. CrAl-based high-temperature coatings on zirconium alloy and oxidation behavior [J]. Surf. Technol., 2018, 47(9): 34
吴亚文, 贺秀杰, 张继龙 等. 锆合金表面CrAl基耐高温涂层及氧化行为研究 [J]. 表面技术, 2018, 47(9): 34
13 Kim H G, Kim I H, Jung Y I, et al. Out-of-pile performance of surface-modified Zr cladding for accident tolerant fuel in LWRs [J]. J. Nucl. Mater., 2018, 510: 93
doi: 10.1016/j.jnucmat.2018.07.061
14 Zhong W C, Mouche P A, Han X C, et al. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions [J]. J. Nucl. Mater., 2016, 470: 327
doi: 10.1016/j.jnucmat.2015.11.037
15 Park D, Mouche P A, Zhong W C, et al. TEM/STEM study of Zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure [J]. J. Nucl. Mater., 2018, 502: 95
doi: 10.1016/j.jnucmat.2018.01.055
16 Wu X, Kozlowski T, Hales J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions [J]. Ann. Nucl. Energy, 2015, 85: 763
doi: 10.1016/j.anucene.2015.06.032
17 Wang Z Y, Liu J Z, Wang L, et al. Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique [J]. Appl. Surf. Sci., 2017, 396: 1435
doi: 10.1016/j.apsusc.2016.11.183
18 Feng Z J, Ke P L, Huang Q, et al. The scaling behavior and mechanism of Ti2AlC MAX phase coatings in air and pure water vapor [J]. Surf. Coat. Technol., 2015, 272: 380
doi: 10.1016/j.surfcoat.2015.03.037
19 Gutzmann H, Gärtner F, Höche D, et al. Cold spraying of Ti2AlC MAX-phase coatings [J]. J. Therm. Spray Technol., 2013, 22: 406
doi: 10.1007/s11666-012-9843-1
20 Alat E, Motta A T, Comstock R J, et al. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding [J]. J. Nucl. Mater., 2016, 478: 236
doi: 10.1016/j.jnucmat.2016.05.021
21 Daub K, Van Nieuwenhove R, Nordin H. Investigation of the impact of coatings on corrosion and hydrogen uptake of Zircaloy-4 [J]. J. Nucl. Mater., 2015, 467: 260
doi: 10.1016/j.jnucmat.2015.09.041
22 Liu Y, Bhamji I, Withers P J, et al. Evaluation of the interfacial shear strength and residual stress of TiAlN coating on ZIRLO™ fuel cladding using a modified shear-lag model approach [J]. J. Nucl. Mater., 2015, 466: 718
doi: 10.1016/j.jnucmat.2015.06.003
23 Mo J L, Zhu M H, Lei B, et al. Comparison of tribological behaviours of AlCrN and TiAlN coatings—Deposited by physical vapor deposition [J]. Wear, 2007, 263: 1423
doi: 10.1016/j.wear.2007.01.051
24 Park J W, Kim J U, Park J Y. Ion beam mixed oxidation protective coating on Zry-4 cladding [J]. Nucl. Instrum. Methods Phys. Res. Sect. B, 2016, 377: 12
doi: 10.1016/j.nimb.2016.04.001
25 Bao W C, Xue J X, Liu J X, et al. Coating SiC on Zircaloy-4 by magnetron sputtering at room temperature [J]. J. Alloys Compd., 2018, 730: 81
doi: 10.1016/j.jallcom.2017.09.281
26 Rai A K, Srinivasulu B, Paul C P, et al. Development of thick SiC coating on thin wall tube of Zircaloy-4 using laser based directed energy deposition technique [J]. Surf. Coat. Technol., 2020, 398: 1
27 Meng F P, Wang B, Ge F F, et al. Microstructure and mechanical properties of Ni-alloyed SiC coatings [J]. Surf. Coat. Technol., 2012, 213: 77
doi: 10.1016/j.surfcoat.2012.10.020
28 Usui T, Sawada A, Amaya M, et al. SiC coating as hydrogen permeation reduction and oxidation resistance for nuclear fuel cladding [J]. J. Nucl. Sci. Technol., 2015, 52: 1
29 Malinovschi V, Marin A, Negrea D, et al. Characterization of Al2O3/ZrO2 composite coatings deposited on Zr-2.5Nb alloy by plasma electrolytic oxidation [J]. Appl. Surf. Sci., 2018, 451: 169
doi: 10.1016/j.apsusc.2018.04.207
30 Wang Y, Tang H, Han X C, et al. Oxidation resistance improvement of Zr-4 alloy in 1000℃ steam environment using ZrO2/FeCrAl bilayer coating [J]. Surf. Coat. Technol., 2018, 349: 807
doi: 10.1016/j.surfcoat.2018.05.005
31 Tang C C, Stueber M, Seifert H J, et al. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings [J]. Corros. Rev, 2017, 35: 141
doi: 10.1515/corrrev-2017-0010
32 Kim H G, Kim I H, Jung Y I, et al. High-temperature oxidation behavior of Cr-coated zirconium alloy [A]. TopFuel 2013 [C]. Charlotte, North Carolina, 2013
33 Maier B, Yeom H, Johnson G, et al. Development of cold spray coatings for accident-tolerant fuel cladding in light water reactors [J]. JOM, 2018, 70: 198
doi: 10.1007/s11837-017-2643-9
34 Park D J, Kim H G, Jung Y I, et al. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions [J]. J. Nucl. Mater., 2016, 482: 75
doi: 10.1016/j.jnucmat.2016.10.021
35 Wang X J, Liu Y H, Feng S, et al. Synthesis and property characterization of magnetron sputtered SiC/Cr coatings on Zr-based alloy [J]. Chin. J. Vac. Sci. Technol., 2018, 38: 332
王晓婧, 刘艳红, 冯 硕 等. 锆合金表面磁控溅射制备SiC/Cr复合涂层的研究 [J]. 真空科学与技术学报, 2018, 38: 332
36 Wang Y D, Zhou W C, Wen Q L, et al. Behavior of plasma sprayed Cr coatings and FeCrAl coatings on Zr fuel cladding under loss-of-coolant accident conditions [J]. Surf. Coat. Technol., 2018, 344: 141
doi: 10.1016/j.surfcoat.2018.03.016
37 Hu X G, Dong C, Wang Q, et al. High-temperature oxidation of thick Cr coating prepared by arc deposition for accident tolerant fuel claddings [J]. J. Nucl. Mater., 2019, 519: 145
doi: 10.1016/j.jnucmat.2019.01.039
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
[7] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
[8] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[15] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
No Suggested Reading articles found!