Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (1): 49-54    DOI: 10.11901/1005.3093.2021.230
ARTICLES Current Issue | Archive | Adv Search |
Physical Properties of Er2O3 Doped Gd2(Zr0.8Ti0.2)2O7 Ceramic Materials
LI Ruiy, XIE Min(), ZHANG Yonghe, PEI Xun, LIU Yang, SONG Xiwen
School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China
Cite this article: 

LI Ruiy, XIE Min, ZHANG Yonghe, PEI Xun, LIU Yang, SONG Xiwen. Physical Properties of Er2O3 Doped Gd2(Zr0.8Ti0.2)2O7 Ceramic Materials. Chinese Journal of Materials Research, 2022, 36(1): 49-54.

Download:  HTML  PDF(961KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Er2O3 doped ceramic materials (Gd1-xErx)2(Zr0.8Ti0.2)2O7 (x=0, 0.2,0.4, x is mole fraction) were prepared by solid-state reaction method, the crystallographic structure, microstructure, thermophysical properties and mechanical properties of the materials were examined in terms of the effect of Er2O3 doping. The results show that (Gd1-xErx)2(Zr0.8Ti0.2)2O7 ceramic material presents the same crystallographic structure as cubic pyroclase with good high temperature phase stability from room temperature to 1200℃. Er3+ doping can reduce the thermal conductivity and the average thermal expansion coefficient of the ceramic materials, peculiarly, the thermal conductivity of (Gd0.8Er0.2)2(Zr0.8Ti0.2)2O7 ceramic material is the lowest at 1000℃, which is 1.26 W·m-1·k-1. In addition, the doping of Er3+ can improve the hardness and fracture toughness of the material.

Key words:  inorganic non-metallic materials      thermal barrier coating materials      pyrochlore      thermal properties      enhanced toughness     
Received:  15 April 2021     
ZTFLH:  TG174.45  
Fund: National Natural Science Foundation of China(51762036);Inner Mongolia Autonomous Region Applied Technology Research and Development Resources Fund Project
About author:  XIE Min, Tel: 15848818208, E-mail: 59956941@qq.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.230     OR     https://www.cjmr.org/EN/Y2022/V36/I1/49

Fig.1  XRD patterns of (Gd1-xErx)2(Zr0.8Ti0.2)2O7 ceramics
xa/nmrA/nmrB/nmrA/rBRelative density/%
01.047320.10500.06971.506594.9
0.21.044260.10400.06971.493397.9
0.41.040700.10320.06971.480196.9
Table 1  Lattice parameters,ion radius and relative density of (Gd1-xErx)2(Zr0.8Ti0.2)2O7 ceramics
Fig.2  SEM photograph of (Gd1-xErx)2(Zr0.8Ti0.2)2O7 ceramics
Fig.3  Linear change rate of (Gd1-xErx)2(Zr0.8Ti0.2)2O7 ceramics
Fig.4  Thermal diffusivities of (Gd1-xErx)2(Zr0.8Ti0.2)2O7 ceramics
Fig.5  Thermal conductivities of (Gd1-xErx)2(Zr0.8Ti0.2)2O7 ceramics
Fig.6  Hardness and fracture toughness of (Gd1-xErx)2(Zr0.8Ti0.2)2O7 ceramics
1 Goward G W. Progress in coatings for gas turbine airfoils [J]. Surface & Coatings Technology, 1998, 108: 73
2 Guo H B, Gong S K, Xu H B. Progressin thermal barrier coatings for advanced aeroengine [J]. Materials China, 2009, 29(9/10): 18
郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展 [J]. 中国材料进展, 2009, 29(9/10): 18
3 Wu Q, Zhang X, Peng H R, et al. Thermophysical properties of pyrochlore structure A2B2O7 thermal barrier coating materials: A review [J]. Thermal Spray Technology, 2014, 6(1): 1
吴 琼, 张 鑫, 彭浩然等. 烧绿石结构A2B2O7热障涂层材料热物理性能综述 [J]. 热喷涂技术, 2014, 6(1): 1
4 Yuan X H, Guo H B, Peng H, et al. High temperature thermo-physical properties of and preparation of a novel thermal barrier coating Gd2Zr2O7-8YSZ [J]. Acta Materiae Compositae Sinica, 2013, 30(05): 138
袁小虎, 郭洪波, 彭 徽等. Gd2Zr2O7陶瓷的高温热物理性能及Gd2Zr2O7-8YSZ双涂层制备 [J]. 复合材料学报, 2013, 30(05): 138
5 Zhang S P, Hua Y Q, Shuai W W, et al. Thermophysical properties of Gd2(CexZr1-x)2O7 ceramic materials [J]. Journal of Ceramics, 2019, 40(03): 301
张少朋, 花银群, 帅文文等. Gd2(CexZr1-x)2O7陶瓷材料的热物理性能研究 [J]. 陶瓷学报, 2019, 40(03): 301
6 Jiang B C. The effect of TiSi2 doping on structures and properties of Gd2Zr2O7 ceramic for thermal barrier coatings [D]. Jiangsu University, 2019
姜伯晨. TiSi2的掺杂对Gd2Zr2O7热障涂层陶瓷层材料结构与性能的影响 [D]. 江苏大学, 2019
7 Kutty K V G, Rajagopalan S, Mathews C K, et al. Thermal expansion behaviour of some rare earth oxide pyrochlores [J]. Mater Res Bull, 1994, 29(7): 759
8 Xizhong Wang, Lei Guo, Hailin Zhang, et al. Structural evolution and thermal conductivities of (Gd1-xYbx)2Zr2O7 (x=0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramics for thermal barrier coatings [J]. Ceramics International, 2015, 41(10): 12621
9 Wan C. L., Pan W., Xu Q., et al. Effect of point defects on the thermal transport properties of (LaxGd1-x)2Zr2O7: Experiment and theoretical model [J]. Physical Review B, 2006, 74(14): 1
10 Chunlei Wan, Zhixue Qu, Aibing Du, et al. Influence of B site substituent Ti on the structure and thermophysical properties of A2B2O7-type pyrochlore Gd2Zr2O7 [J]. Acta Materialia, 2009, 57(16): 4782
11 Zhang Y. H., Xie M., Zhou F., et al. Low thermal conductivity in La2Zr2O7 pyrochlore with A-site partially substituted with equimolar Yb2O3 and Er2O3 [J]. Ceramics International, 2014, 40(7) part A: 9151
12 Zhang X P, Chen X G, Zhang H S. Research progress of ceramic materials for thermal barrier coatings [J]. Journal of Synthetic Crystals, 2016, 45(7): 1000
张仙平, 陈晓鸽, 张红松. 热障涂层用陶瓷材料研究进展 [J]. 人工晶体报, 2016, 45(7): 1000
13 Zebarjadi M, Esfarjani K, Yang J, et al. Effect of filler mass and binding on thermal conductivity of fully filled skutterudites [J]. Physical Review B, 2010, 82(19): 19527
14 Mandal B. P., Tyagi A. K.. Preparation and high temperature-XRD studies on a pyrochlore series with the general composition Gd2-xNdxZr2O7 [J]. Journal of Alloys and Compounds, 2007, 437(1-2): 260
15 Zhou Y. Material Analysis Method [M]. Beijing: China Machine Press, 2004
周 玉. 材料分析方法 [M]. 北京: 机械工业出版社, 2004
16 Subramanian M. A., Aravamudan G., Subba R. G. V.. Oxide pyrochlores-A review [J]. Progress in Solid State Chemistry, 1983, 15(2): 55
17 Hanako N., Yamamura H., Aarai T., et al. Effect of cation radius ratio and unit cell free volume on oxide-ion conductivity in oxide systerms with pyrochore-type composition [J]. Journal of the Ceramic Society of Japan, 2004, 112(10): 541
18 Yamamura H, Nishino H, Kakinuma K, Nomura K. Electrical conductivity anomaly around fluorite-pyrochlore phase boundry [J]. Solid State Ionics, 2003, 158(3-4): 359
19 Guan Z D, Zhang Z T, Jiao J S. Physical Properties of Inorganic Materials [M]. Beijing: Tsinghua University Press, 2008
关振铎, 张中太, 焦金生. 无机材料物理性能 [M]. 北京: 清华大学出版社, 2008
20 Zhang Yu, Guo Lei, Zhao Xiaoxiang. Effects of non-stoichiometry on the mechanical properties of Nd2 -xZr2+xO7 +x/2 ceramics [J]. Mterials Letters, 2014, 136: 157
21 Kingery W D, Bowen H K, Uhlmann D R. Introduction to Ceramics [M]. New York:John Wiley & Sons, 1976: 589
22 Xie M, Song X W, Zhou F, et al. Effect of Er3+ doping on the structure and thermophysical properties of Nd2Zr2O7 phase [J]. Rare earth, 2016, 37(04): 51
谢 敏, 宋希文, 周 芬. Er3+掺杂对Nd2Zr2O7相结构及热物理性能的影响 [J]. 稀土, 2016, 37(04): 51
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!