Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (1): 40-48    DOI: 10.11901/1005.3093.2020.474
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Performance Characterization of Hydroxyapatite-Barium Titanate as Human Bone Imitating Composite Material
ZHANG Changsong(), WANG Chu, WEI Lizhu, YANG Guanlin
School of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
Cite this article: 

ZHANG Changsong, WANG Chu, WEI Lizhu, YANG Guanlin. Preparation and Performance Characterization of Hydroxyapatite-Barium Titanate as Human Bone Imitating Composite Material. Chinese Journal of Materials Research, 2022, 36(1): 40-48.

Download:  HTML  PDF(9939KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hydroxyapatite (HA)-barium titanate (BT) of human bone imitating composite material was prepared by sintering process with HA powder and BT powder as raw material,and then was characterized by XRD, SEM with EDS, synchronous thermal analyzer, universal material testing machine, quasi-static piezoelectric coefficient measuring instrument and dielectric constant measuring instrument. The results show: the partial decomposition of HA and BT resulted in the reaction of the raw materials in the pressed block at certain temperature to produce CaTiO3, Ca3(PO4)2, TiO2, BaTi2O5 and other phases. The bio-piezoelectric HA-BT composite containing 70% BT sintered at 1200℃ is composed of grains uniform size with good compactness and comprehensive property closed to those of human bone, such as compressive strength (110.215 MPa) and electrical properties (d33=2 pC/N, εr=44.6).

Key words:  composite      biological piezoelectric ceramics      bone tissue      atmospheric sintering      piezoelectric properties     
Received:  05 November 2020     
ZTFLH:  TB332  
Fund: Xi'an Institute of Modern Chemistry Open Cooperative Innovation Fund(SYJJ200304)
About author:  ZHANG Changsong, Tel: 15319796585, E-mail: zhangcs@sust.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.474     OR     https://www.cjmr.org/EN/Y2022/V36/I1/40

Fig.1  XRD patterns of HA-BT composite material sintered at 1200℃ for 1 h (a) and double-peak structure in XRD patterns of HA-70BT (b) (●BaTiO3, ■Ca10(PO4)6(OH)2, ▲CaTiO3, ◆Ca3(PO4)2, △Ba4Ti13O30, ○Ba2TiO4, ◇TiO2, □BaTi2O5)
Fig.2  SEM images (a~d) and EDS images (e, f) of HA-BT with different BT content sintered at 1200℃ for 1 h (a) HA-10BT; (b) HA-30BT; (c) HA-70BT; (d) HA-90BT; (e, f) EDS spectrum of HA-70 BT composite
Fig.3  Density (a) and compressive strength (b) of HA-BT composite ceramic materials with different BT content after sintering at 1200℃ for 1 h
Fig.4  Electrical parameters of HA-BT composite ceramic materials with different BT content sintered at 1200℃ for 1 h (a) piezoelectric constant (d33); (b) dielectric constant (εr) and dielectric loss (tan?δ)
Fig.5  XRD patterns of HA-70BT sintered at different temperatures (●BaTiO3, ■Ca10(PO4)6(OH)2, ▲CaTiO3, ◆Ca3(PO4)2,□BaTi2O5,◇TiO2)
Fig.6  TG (a) -DSC (b) analysis chart of HA-70BT sample
Fig.7  Sintering reaction process of HA-70BT sample
Fig.8  Micro-morphology of HA-70BT sintered at different temperatures (a) 1000℃; (b) 1100℃; (c) 1200℃; (d) 1300℃
Fig.9  Density (a) and compressive strength (b) of HA-70BT sintered at different temperatures
Fig.10  Electrical parameters of HA-70BT sintered at different temperatures (a) Piezoelectric constant (d33); (b) Dielectric constant (εr) and dielectric loss (tan?δ)
1 Ma H S, Feng C, Chang J, et al. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy [J]. Acta Biomater., 2018, 79: 37
2 Wang Y C, Malcolm D W, Benoit D S W. Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing [J]. Biomaterials, 2017, 139: 127
3 Sui B D, Hu C H, Liu A Q, et al. Stem cell-based bone regeneration in diseased microenvironments: Challenges and solutions [J]. Biomaterials, 2019, 196: 18
4 Zhu Y, Zhang K, Zhao R, et al. Bone regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone defect and the induced immunoregulation of MSCs [J]. Biomaterials, 2017, 147: 133
5 Lai Y X, Cao H J, Wang X L, et al. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits [J]. Biomaterials, 2018, 153: 1
6 Fukada E, Yasuda I. On the piezoelectric effect of bone [J]. J. Phys. Soc. Jpn., 1957, 12: 1158
7 Itoh S, Nakamura S, Nakamura M, et al. Enhanced bone ingrowth into hydroxyapatite with interconnected by electrical polarization [J]. Biomaterials, 2006, 27: 5572
8 Bagno A, Piovan A, Dettin M, et al. Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides [J]. Bone, 2007, 40: 693
9 Fukada E. Mechanical deformation and electrical polarization in biological substances [J]. Biorheology, 1968, 5: 199
10 Fukada E, Yasuda I. Piezoelectric effects in collagen [J]. Jpn. J. Appl. Phys., 1964, 3(8): 117
11 Kay M I, Young R A, Posner A S. Crystal structure of hydroxyapatite [J]. Nature, 1964, 204: 1050
12 Jiao H, Zhao K, Bian T R, et al. Hydrothermal synthesis and properties characterization of barium titanate/hydroxyapatite spherical nanocomposite materials [J]. J. Alloys Compd., 2017, 715: 73
13 Lee B T, Kim K H, Youn H C, et al. Functionally gradient and micro-channeled Al2O3-(t-ZrO2)/HAp composites [J]. J Am. Ceram. Soc., 2007, 90: 629
14 Huang S P, Huang B Y, Zhou K C, et al. Effects of coatings on the mechanical properties of carbon fiber reinforced HAP composites [J]. Mater. Lett., 2004, 58: 3582
15 Kumar D, Gittings J P, Turner L G, et al. Polarization of hydroxyapatite: Influence on osteoblast cell proliferation [J]. Acta Biomater., 2010, 6: 1549
16 Bodhak S, Bose S, Bandyopadhyay A. Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite [J]. Acta Biomater., 2009, 5: 2178
17 Teng N C, Nakamura S, Takagi Y, et al. A new approach to enhancement of bone formation by electrically polarized hydroxyapatite [J]. J. Dent. Res., 2001, 80: 1925
18 Park Y J, Hwang K S, Song J E, et al. Growth of calcium phosphate on poling treated ferroelectric BaTiO3 ceramics [J]. Biomaterials, 2002, 23: 3859
19 Feng J Q, Yuan H P, Zhang X D. Promotion of osteogenesis by a piezoelectric biological ceramic [J]. Biomaterials, 1997, 18: 1531.
20 Tang Y F, Wu C, Wu Z X, et al. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration [J]. Sci. Rep., 2017, 7: 43360
21 Dubey A K, Anumol E A, Balani K, et al. Multifunctional properties of multistage spark plasma sintered HA-BaTiO3‐based piezobiocomposites for bone replacement applications [J]. J. Am. Ceram. Soc., 2013, 96: 3753
22 Ozcelik B K, Ergun C, Liu H N. A study on calcium phosphate/barium titanate composites: phase characterization, piezoelectric property, and cytocompatibility [J]. J. Aust. Ceram. Soc., 2020, 56(4): 1197
23 Sharabi M, Mandelberg Y, Benayahu D, et al. A new class of bio-composite materials of unique collagen fibers [J]. J. Mech. Behav. Biomed. Mater., 2014, 36: 71
24 Wu L, Chure M C, Wu K K, et al. Dielectric properties of barium titanate ceramics with different materials powder size [J]. Ceram. Int., 2009, 35: 957
25 Inoue M, Rodriguez A P, Takagi T, et al. Effect of a new titanium coating material (CaTiO3-aC) prepared by thermal decomposition method on osteoblastic cell response [J]. J. Biomater. Appl., 2010, 24: 657
26 Gu Y W, Loh N H, Khor K A, et al. Spark plasma sintering of hydroxyapatite powders [J]. Biomaterials, 2002, 23: 37
27 Tavangar M, Heidari F, Hayati R, et al. Manufacturing and characterization of mechanical, biological and dielectric properties of hydroxyapatite-barium titanate nanocomposite scaffolds [J]. Ceram. Int., 2020, 46: 9086
28 Vouilloz F J, Castro M S, Vargas G E, et al. Reactivity of BaTiO3-Ca10(PO4)6(OH)2 phases in composite materials for biomedical applications [J]. Ceram. Int., 2017, 43: 4212
29 Rezwan K, Chen Q Z, Blaker J J, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering [J]. Biomaterials, 2006, 27: 3413
30 Park J B, Lake R S. Biomaterials. An Introduction [M]. 2nd ed. New York: Plenum Press, 1992: 194
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!